HEART RATE AND BLOOD LACTATE RESPONSES TO 

**CHANGQUAN AND DAOSHU FORMS OF MODERN WUSHU**


EsEF/UFRGS Physical Education School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Published (online): 01 July 2006

**ABSTRACT**

The development of specific training designed to enhance physiological aspects of performance relies heavily on the availability of accurate and validity physiological data. In the combat sport of Wushu, *katas* are used to develop aerobic fitness. It is arguably important to assess and monitor heart rate (HR) and lactate (La) responses when designing effective training programs. The aim of this pilot study was to investigate heart rate and lactate responses to forms execution among Wushu combatants. Male elite modern Wushu athletes (*n* = 4) from a South Brazilian regional team participated in the study. Athletes were aged 22.5 ± 2.08 years old and had at least eight years of Wushu experience. Athletes carried out the Changquan and Daoshu forms in random order, HR and La were measured pre- and post-exercise. Results indicate that HR was 176 ± 3 and 176 ± 2 bpm and La was 4.38 ± 1.3 and 5.15 ± 1.07 mmol·l⁻¹ for Changquan and Daoshu forms, respectively. There were no significantly differences in HR and La between the two forms. HR values represent 89.2 ± 1.1 and 89.1 ± 1.8% of age-predicted maximal heart rate and lactate was near of 4 mmol·l⁻¹ point. In conclusion, training programs to Wushu combatants could target the range of physiological values cited above with no differences between two forms.

**KEY WORDS**: Kung-fu, training, combat sports.

**INTRODUCTION**

Evaluation of performance is important for both athlete and coach, thus information about physiological capacity is critical. These data allows more effective training program design and its comparison with reference values. In addition, it could provide base for athletic approach as one can identify athletes’ potentials and limitations.

Specificity is one of the physical training principles and it is critical to training program design. The specific exercise promotes adaptations that generate sport-specific effects of training (Hewson and Hopkins, 1996; Hill et al., 1998). Within combat sports, some studies have demonstrated that *katas* or forms-based training could cause aerobic training effects (Schmidt and Royer, 1973; Shaw and Deutsch, 1982; Pieter et al., 1990; Zehr and Sale, 1993). However, it is necessary to distinguish specific physiological characteristics of that sport to design this type of training. For a specific training program design, the determination of workload is not only critical, but attaining the necessary metabolic demand, heart rate (HR) (Shaw and Deutsch, 1982) and blood lactate (La) are also key parameters (Hetzler et al., 1989; Zehr and Sale,
Taking in account the need of specific training programs’ design and that heart rate and blood lactate have been used to evaluate combat sports, the aim of this pilot study was to verify heart rate and lactate responses before and after the execution of Changquan and Daoshu forms of modern Wushu. In addition, there are no studies that evaluate physiological responses to modern Wushu, and this sport probably will be inserted in the next Olympic Games from Beijing, China, 2008.

**METHODS**

**Participants**

Four male volunteers (age = 22.5 ± 2.08 years, weight = 62.1 ± 9.01 kg, height = 1.73 ± 0.08 m) of the Wushu regional team from south of Brazil participated of study. They had, at least, 8 years of training experience and gave their written informed consent before participating in the study. The protocol was approved by UFRGS’ Ethical Committee. An acknowledged limitation of the present study is the relatively small sample size. It should be noted that all elite athletes of Wushu regional team volunteered to participate in this study and clearly future research should use a larger size.

**Experimental protocol**

Heart rate and blood lactate were measured before non-standardised 10-min warm-up. The athletes were asked to perform the same warm-up exercises from your training workout consisting of static and dynamic stretching exercises, and 10-min after warm-up HR and lactate were measured. Post-exercise HR and 5-min post-exercise La were registered. To mimic the competition effort, a simulated competition mode was used motivating combatants. The tests were performed at morning on two separate days with 48 h interval in a randomized order. Athletes were fasted and blood samples were collected from ear lobe in a seated position. The HR was measured through a cardio-tachometer (Polar S610, USA) and blood lactate using a Lactate Analyzer (Roche Accusport, GER).

**Statistics**

Data are expressed as mean ± SD. Mann-Whitney test was used for comparisons of HR and La between forms. The level of significance was set at p < 0.05.

**RESULTS**

Resting HR was 76 ± 7 and 78 ± 9 bpm for Changquan and Daoshu, respectively. Pre-exercise HR was 82 ± 5 and 83 ± 7 bpm for Changquan and Daoshu, respectively. There were no significant differences between resting and pre-exercise HR for both forms. Immediately after the forms execution, HR values were 176 ± 3 and 176 ± 2 bpm for Changquan and Daoshu, respectively. This result represents 89% of age-predicted maximal heart rate (220-age). Post-exercise HR was significant greater than resting and pre-exercise values for both forms. Resting blood lactate values were 1.80 ± 0.36 and 1.33 ± 0.43 mmol·l⁻¹. Pre-exercise blood lactate values were 2.05 ± 0.21 and 1.80 ± 0.24 mmol·l⁻¹. There were no significant differences between resting and pre-exercise HR for both forms (p < 0.05). Five minutes after forms execution, La values were 4.38 ± 1.63 and 5.15 ± 1.07 mmol·l⁻¹ for Changquan and Daoshu, respectively. Post-exercise La was significant greater than resting and pre-exercise La for both forms (p < 0.05). There was no significant difference for HR and La between two forms.

**DISCUSSION**

The American College of Sports Medicine (ACSM, 1990) recommends 3 to 5 days/week, 60 to 90% of maximal HR (HRmax) or 50 to 85% of maximal oxygen uptake (VO₂max) and 20 to 60 min of continuous aerobic activity to development of cardio-respiratory fitness. The studies of combined and selected techniques from katas (Schmidt and Royer, 1973; Shaw and Deutsch, 1982; Pieter et al., 1990) that evaluates HR without VO₂ measure, suggest that karate exercises could raise HR to the level for enhance cardiovascular fitness. Findings from the present study demonstrate that athletes performing modern Wushu forms attained 89% of age-predicted Hrmax, a level of workload that is in the range recommended by ACSM and, thus, suggests its use for training.

Zehr and Sale (1993) evaluated the efficacy of Chito Ryu Seisan Kata like aerobic power training method. HR and VO₂max were evaluated continuously through katas execution in moderate and intense paces. The HR was, respectively, 93 ± 6 and 101 ± 3% of HRmax obtained in maximal cycle ergometer test. There were no differences between paces. Karate katas could cause desired effects of cardiovascular training when performed in intense pace. However, Shaw and Deutsch (1982) initiated that a training program should not use only one kata, but importantly, they indicated that higher HR were associated with high intensity kata. Among a sample of professional karate athletes, Schmidt and Royer (1973) demonstrated an average HR of 144.5 (138-152) bpm which means 80% of their Hrmax. Interestingly, the protocol used by Pieter et al. (1990) lends support to using a similar form of
training method, showing taekwondo athletes reported increased HR to 80% of age-predicted HRmax.

The present study also demonstrated that blood lactate increase to 4.38 ± 1.63 and 5.15 ± 1.07 mmol·l⁻¹ for Changquan and Daoshu forms, respectively. Anaerobic threshold have been considered like 4 mmol·l⁻¹ (Heck et al., 1985). Zehr and Sale (1993) also measure blood lactate during Chito Ryu Seisan Kata performed in moderate and intense paces. The results represent 11.5 and 22.2%, respectively, of peak values from maximal cycle ergometer test. Faster pace produces significant higher response. Blood lactate responses to beginning level form (Ki Cho I) of Moo Duk Tkow, a taekwondo subdivision, was investigated by another study (Hetzler et al., 1989), and lactate value increases to 3.23 ± 1.56 mmol·l⁻¹. Blood lactate levels changes with exercise intensity, but another factors can contribute. In the present study, there were no significant differences between Changquan and Daoshu (the late performed with sword). This means that the use of sword does not increase workload.

CONCLUSIONS

Present study demonstrates that modern Wushu athletes attained 89% of age-predicted HRmax and 4.0 to 5.0 mmol·l⁻¹ of blood lactate after performing Changquan and Daoshu forms. In addition, there were no significant differences between forms. However, it’s important more studies that analyze physiological responses of Wushu combatants to this sport. If these parameters will be confirmed, specific training could be developed to enhance aerobic fitness in the combat sport of Wushu. The Wushu katas could be used to develop aerobic fitness with these reference values serving to training goal.

ACKNOWLEDGMENTS

The authors would like to thank Sports Ministry of Brazil.

REFERENCES


KEY POINTS

- Heart rate and lactate responses are not significantly different between Changquan and Daoshu forms for Wushu combatants.
- The Wushu katas could be used to develop aerobic fitness.

AUTHORS BIOGRAPHY

<table>
<thead>
<tr>
<th>Jerri L. RIBEIRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
</tr>
<tr>
<td>Prof. in Human and Exercise Physiology, Methodist College Center, Porto Alegre, RS, Brazil.</td>
</tr>
<tr>
<td>Degrees</td>
</tr>
<tr>
<td>BPE, PhD</td>
</tr>
<tr>
<td>Research interests</td>
</tr>
<tr>
<td>Physiological testing, performance, metabolism, endothelial function, cardiovascular control.</td>
</tr>
<tr>
<td>E-mail: <a href="mailto:jerriribeiro@yahoo.com.br">jerriribeiro@yahoo.com.br</a></td>
</tr>
</tbody>
</table>
Physiologic responses to modern *Wushu*

---

**Bruno Ogoday S. D. de CASTRO**

**Employment**
Prof. in Kung Fu techniques, Methodist College Center, Porto Alegre, RS, Brazil.

**Degree**
Graduate in Physical Education

**Research interests**
Performance.

**E-mail:** brousodcastro@hotmail.com

---

**Caio S. ROSA**

**Employment**
Prof. in Physical Education, Porto Alegre, RS, Brazil.

**Degree**
Graduate in Physical Education

**Research interests**
Physiological testing, performance.

**E-mail:** caiorosa@bol.com.br

---

**Rafael R. BAPTISTA**

**Employment**
Kinesiology teacher - Physical Education School, Federal University of Rio Grande do Sul, Anatomy teacher - Lutheran University of Brazil.

**Degree**
MSc

**Research interests**
Fatigue, muscle physiology and lactate threshold.

**E-mail:** baptistarafael@terra.com.br

---

**Alvaro R. OLIVEIRA**

**Employment**
Prof. in Exercise Physiology, Physical Education School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.

**Degrees**
BPE, MSc, PhD

**Research interests**
Oxidative stress, metabolism, endothelial function, cardiovascular control, physiological testing, performance.

**E-mail:** aroliveira@esef.ufrgs.br

---

**Jerri Luiz Ribeiro, PhD**
Director, Rua Felizardo, 750 – LAPEX Jd. Botânico – POA/RS CEP 90690-200, Brazil