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ABSTRACT  
While scoring strategies and player performance in cricket have been studied, there has been little 
published work about the influence of batting order with respect to One-Day cricket. We apply a 
mathematical modelling approach to compute efficiently the expected performance (runs distribution) of 
a cricket batting order in an innings. Among other applications, our method enables one to solve for the 
probability of one team beating another or to find the optimal batting order for a set of 11 players. The 
influence of defence and bowling ability can be taken into account in a straightforward manner. In this 
presentation, we outline how we develop our Markov Chain approach to studying the progress of runs for 
a batting order of non-identical players along the lines of work in baseball modelling by Bukiet et al. 
(1997). We describe the issues that arise in applying such methods to cricket, discuss ideas for addressing 
these difficulties and note limitations on modelling batting order for One-Day cricket. By performing our 
analysis on a selected subset of the possible batting orders, we apply the model to quantify the influence 
of batting order in a game of One Day cricket using available real-world data for current players.  
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INTRODUCTION 
 
Many cricket commentators will suggest that certain 
players perform best as “Number Three” in the 
batting line-up. Listen to almost any commentary 
team during the course of a One-Day game and you 
will hear statements based upon rules of thumb like, 
“Ricky Ponting is a genuine number three.” This 
raises the question, is there really a “Batting Order 
Effect” and assuming there is, how would you test 
this? Suppose that a cricket coach decided to test 
every possible batting order for a team of 11 players, 
how many games would they have to play? With a 
team of 11 players, there are nearly 40 million 

possible line-ups, thus if they could play 1 game 
every day, it would take a little more than 109286 
years (assuming players lived and could play for that 
long). However, if one has data for the ability of 
each of the batsmen in a cricket lineup, one can 
apply techniques of mathematical modelling to 
ascertain how well a set batting order (against a 
specified set of bowlers) should perform. 
 
Previous Research 
There has been little published work about the 
influence of batting order with respect to One-Day 
cricket. The earliest work on mathematical analysis 
of cricket was by Wood (1945) and Elderton (1945) 
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who studied whether cricketers’ scores follow 
geometric progressions. Starting in the late 1980’s 
and continuing up to the present, Clarke’s and his 
group [e.g. Clarke (1988), Johnston et al. (1993) and 
Norman and Clarke (2004)] have studied cricket 
scoring strategies and player performance, among 
other cricket issues, by applying dynamic 
programming methods. Clarke (1988) addressed 
cricket strategies in terms of optimal run rates using 
dynamic programming techniques. Johnston et al. 
(1993) assessed player performance by dynamic 
programming and developed a ranking system to aid 
in assessing a player’s performance. Cohen (2002) 
studied the probability of dismissing a team before 
50 overs and the geometric nature of scoring strokes. 
Norman and Clarke (2004) investigated the effect of 
a sticky wicket and how a batting team should adjust 
its line-up in the longer form of the game. Although 
Swartz et al. (2006) did study the problem of finding 
optimal cricket batting orders; their work has been 
from a statistical simulation, rather than a 
mathematical modelling perspective. Swartz et al. 
(2006) devised a statistical method to compute the 
probability of each outcome for each batsman with 
corrections based on wickets and balls remaining. 
They then simulated games with various batting 
orders (10,000 games per batting order) and used 
simulated annealing to reduce number of choices of 
batting orders to consider. 

In the current work, we apply a mathematical 
modelling approach to compute efficiently the runs 
distribution of a cricket batting order in an innings. 
The approach, which will be described in the 
following section, uses Markov Chains and is based 
on the method developed by Bukiet et al. (1997) that 
has been used over a number of years for the 
modelling of the run production in baseball. Among 
other applications, our method enables one to solve 
for the expected number of runs a batting order 
should score and the probability of one team beating 
another. By considering all 11! or 39,916,800 
batting orders, one could potentially find the optimal 
batting order for a set of 11 players, i.e., the batting 
order that can be expected to attain the most runs. 
The model is set up such that the influence of 
defence and bowling ability can be taken into 
account in a straightforward manner. As we note in 
later sections of this paper, the time it takes to 
analyse a single lineup using our technique is such 
that evaluating all possible lineups (full 
enumeration) would take a prohibitively long 
amount of time. Thus, presently, the model is mainly 
for theoretical purposes in terms of finding the best 
batting order, but it could be applied to address some 
questions. For example, by considering a selected 
subset of the possible batting orders for 11 

Australian players and applying our model, we 
demonstrate that there is a difference between best 
and worst batting orders and that this difference is 
significant.  

 
METHODS 
 
In this paper, we outline how we develop our 
Markov Chain approach to studying the progress of 
runs for a batting order of non-identical players 
along the lines of work in baseball modelling by 
Bukiet et al. (1997). We describe the issues that arise 
in applying such methods to cricket and how we 
have addressed the difficulties particular to cricket.  

In a Markov process, it is not important to 
know how a given situation arose, just that you are 
in a particular situation. The probability of going 
from one situation to any other is known. There are a 
finite number of situations.  

In the context of cricket, the dynamics of run 
production depends mainly on the interaction of the 
bowler and the batsman. So the game can be 
modelled as a sequence of one-on-one interactions. 
A batsman takes a turn and then we stop and have a 
new situation. The probability of any occurrence 
depends only on the current situation (who is the 
facing batsman, who is the bowler, who is the 
batsman at the other wicket (the non-striker), how 
many balls are left) and possibly only a small subset 
of that. For the most part, there are only 7 states to 
which a given situation will commonly transition on 
a single bowl of the ball. 

 
• A batsman is dismissed and no runs score with 
probability Pd 
• Zero runs score (no dismissal) with probability 
P0 
• One run is scored (no dismissal) with 
probability P1 
• Two runs are scored (no dismissal) with 
probability P2 
• Three runs are scored (no dismissal) with 
probability P3 
• Four runs are scored (no dismissal) with 
probability P4 
• Six runs are scored (no dismissal) with 
probability P6 

 
Making the situation slightly more complex is 

the effect of the batsman switching places. If an odd 
number of runs are scored, the batsman will have 
switched ends. Similarly, if a multiple of six balls 
have been bowled, the bowler has finished the over 
and a new bowler will begin bowling from the other 
end, resulting in the non-striker becoming the facing 
batsman. (We note that it is possible, but uncommon 
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to score 5 runs.  Similarly, it is possible to score runs 
when a batsman is runout. We disregard these 
events, other rare offensive possibilities as well as 
rules concerning fielding restrictions. Our method 
could handle most of these at the cost of greatly 
increased computational time. It appears, at least in 
the case of modelling baseball that ignoring many 
rare situations makes little difference in the results 
as there is much cancellation between including 
positive events (e.g. fives) and negative events (e.g., 
runouts on run scoring balls)). 

Let the multidimensional Matrix M have 
entries M (b,r,w,b1,b2) represent the number of balls 
bowled, runs scored and wickets down, the next 
batsman and the batsman at the other wicket, 
respectively. For each number of balls bowled, we 
can compute the probability of being in a given 
situation by multiplying the (multidimensional) 
matrix representing the set of probabilities after the 
b-1 balls by the probability of each of the events 
listed above occurring. For example, the game 
begins with 0 balls bowled, 0 runs scored, 0 wickets 
gone and batsman number 1 about to hit, with 
batsman number 2 at the other wicket. Thus, M 
(0,0,0,1,2) = 1 and all other entries of M (0,r,w,b1,b2) 
are zero. After the first ball, M (1,0,1,3,2) = Pd, 
M(1,0,0,1,2) = P0, M (1,1,0,2,1) = P1, M (1,2,0,1,2) 
= P2 and so forth. These values are obtained in the 
general case (b balls) by multiplying each non-zero 
entry of M (b-1,r,w, b1,b2) by each of the 
probabilities Pd, P0-P6 and placing the result in the 
appropriate location in the M (b,r,w,b1,b2). After the 
computation has considered 300 balls (with 10 
wickets down causing no future balls to be bowled) 
we end up with the probability of any given number 
of runs having been scored (the runs distribution). 
The computation is actually simplified by looping 
through the number of balls and saving only the 
situation after b-1 balls to compute the situation after 
b balls. Also, one need not keep track of wickets 
dismissed since the batsmen currently in the game 
provide that information (if batsman number 6 in the 
order is in the game, but 7-11 are not, then 4 
batsmen have been dismissed). Thus, an 11 X 11 X 
1800 (batsmen X batsmen X runs) matrix needs be 
maintained and updated. We note that the method 
automatically takes into account that the batsmen 
early in the lineup, if they are the best batters will 
face more balls than the later batsmen. Summing the 
product of each possible number of runs and its 
probability of being the result in the game gives the 
expected number of runs for the batting order 
considered. 

This strategy is the same in philosophy as that 
of Bukiet et al. (1997) only the details are modified. 
The strategy involves mathematically only addition, 

multiplication and some logic. The method makes 
sense only because cricket has the following 
properties: 

 
• Dynamics of run production depends mainly 
on interaction of bowler and batsman so the 
game can be modelled as a sequence of one-on-
one interactions 
• There are a finite number of states in the game 
(batsman, outs, runs) 
• The probability of an occurrence depends only 
on current situation (to a reasonable 
approximation) (One can also implement run or 
score dependence). 

 
Some aspects of One-Day Cricket make it 

more complicated and lengthy to model than for 
baseball.  

 
• There are 11 players who bat on a team in an 
innings. Thus there are over 39 million batting 
orders to consider in a full enumeration.   
• Up to 300 balls are bowled in an innings, in 
groups of 6 (an over). After each over has been 
completed, a different bowler bowls the ball 
from the opposite side of the field. (In baseball 
one can consider the situations as batter by 
batter and there are only about 50 batters up in a 
game for each team).  
• An odd number of runs scored on a ball results 
in the other active batsman batting next (unless 
this is the end of an over). 
• Bowlers switch sides at the end of an over and 
can only bowl a maximum of 10 overs in a 
match. This makes some of the logic and 
bookkeeping more complicated. 
• Typical one-day cricket matches result in each 
team scoring 200-300 runs (much more than the 
0-10 runs common in baseball, with extreme 
cases running up to 20 runs for a team). In 
cricket, in theory a team could get up to 1800 
runs, although the present record is 438 runs 
(ODI #2349 South Africa v Australia at New 
Wanderers Stadium, Johannesburg on 12 March 
2006, South Africa scored 9/438 in reply to 
Australia’s 4/434. Previous record was 5/398 scored 
by Sri Lanka in ODI #1074 Sri Lanka v Kenya at 
Asgiriya Stadium, Kandy during the 1995/96 Wills 
World Cup. Source: CricInfo). 
• This increases run time and storage 
requirements. 
• Pd is very small for most batsmen, typically 
about 0.03 or less, which means outs are very 
rare when compared to baseball. 
• By comparison to baseball, players play in 
fewer games per year. As a result, small errors 
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can have a larger effect on an individual player’s 
probabilities. 
• When the innings is nearing its end, batsmen 
begin taking more risks and score at a higher 
rate. Players who come in to bat with very few 
overs remaining will usually score at a higher 
rate than they normally would if they came in 
earlier in the innings. Only the first batsman has 
a non-zero probability of facing all 300 balls in a 
match. This could potentially skew the 
probability distribution (P0-P6) obtained from the 
data set for a later order batsman. 
• For one lineup a simply written code for 1-day 
cricket takes ~15 seconds on an average PC (up 
to 600 runs considered). To evaluate 11! ~ 
40,000,000 line-ups such a code would take 
about 1000 days. 

 
The large computational time involved using 

this straightforward approach (referred to later on as 
“the straightforward method” makes it unattractive 
as a planning tool for coaches, however some 
streamlining improves the performance. Instead of 
considering each batsman and each ball individually, 
we consider (in what we call our “streamlined 
method”) each pair of batsmen (11 x 10 pairs) and 
each over individually (50 overs). As a further 
simplification, we assume that a maximum of 1 
wicket can fall in any given over; the result is about 
a 1 second improvement in processing time per line-
up studied. 

To include bowling and defensive 
performance, one could scale the offensive 
characteristics in an appropriate way. For example, 
if a given bowler has performance level, say, 2% 
worse, than the average bowler, by some measure, 
then opposing players would have their offensive 
performance (P1-P6) increased by 2% and P0 
decreased accordingly. Ideally, one would like to 
have enough data on how well each bowler performs 
against each batsman (and vice versa), but that is not 
likely to be the case. Another method of scaling  

batsman performance might take into account 
his “handedness”, that of the bowler, and/or the type 
of bowler (e.g., a spin bowler) bowling. One of the 
authors has looked into various methods of 
considering pitcher ability in baseball and found that 
considering such complications did not lead to 
improved results. 
 
RESULTS 
 
Using data gathered from the CricInfo website and 
that kindly supplied by Champion Data, we were 
able to find estimates (for various players) of the 
probability of scoring 0, 1, 2, 3, 4 or 6 runs. Treating 
being not out at the end of a game as the same as 
being run out on the last ball, we can find an 
estimate for the probability of being dismissed. 
Table 1 shows these estimates for 11 Australian 
players. These players have enough experience such 
that the data used takes into account at least 100 
balls being bowled to each of the players and each 
player’s performance in at least 15 matches (except 
for Michael Slater and Glen McGrath as shown in 
Table 2). The data collected did not have many 
matches including Michael Slater, although he has 
played 42 matches for Australia. Glen McGrath 
normally is the last batsman in the Australian batting 
lineup. This limits the amount of data available on 
his performance. 

The probabilities P0-P6 above sum to 
approximately 1 and are the distribution of 0-6 runs 
scored by the players whilst not being dismissed. 
The probability of dismissal, Pd, is calculated as the 
number of innings played divided by the number of 
balls faced. Whilst this does not account for innings 
in which the player does not get dismissed, this error 
in the data is small when a player has played many 
innings and unlikely to be as large as the error 
caused by using small data sets (e.g. a single 
innings). The data from Table 1 can also be used to 
determine the expected runs if the team were made 
up of only 1 player occupying all 11 places, which

 
                               Table 1. Estimated player probabilities. 

P0 P1 P2 P3 P4 P6 Pd Player 
.513 .311 .071 .006 .083 .012 .027 Symonds 
.561 .230 .055 .013 .128 .011 .027 Gilchrist 
.546 .297 .067 .014 .070 .004 .019 Waugh, M. 
.563 .273 .058 .012 .080 .011 .021 Hayden 
.545 .295 .059 .012 .072 .013 .022 Ponting 
.512 .294 .115 .000 .038 .038 .025 Slater 
.533 .319 .060 .004 .060 .020 .051 Bichel 
.526 .332 .071 .005 .026 .032 .083 Lee 
.515 .387 .054 .018 .018 .006  .109 Gillespie 
.687 .234 .046 .000 .031 .000 .250 McGrath 
.555 .324 .072 .003 .039 .004 .051 Warne 
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                                        Table 2. Expected runs and player rankings. 
Player Runs per innings Rank Balls Innings 
Symonds 244.04 3 2096 57 
Gilchrist 263.89 1 4203 117 
Waugh, M 202.15 5 2477 49 
Hayden 216.39 4 3401 73 
Ponting 177.64 6 5056 112 
Slater 254.57 2 78 2 
Bichel 148.66 7 444 23 
Lee 61.31 9 334 28 
Gillespie 53.95 10 165 18 
McGrath 13.60 11 64 16 
Warne 120.13 8 635 33 

 
then enables us to rank the players. This ranking, 
computed when limiting runs to 600, is shown in 
Table 2. 

Using this ranking, we compute the expected 
runs using the “straightforward method” when the 
players are ordered in Best-Worst ranked order 
(Gilchrist bats first, Slater second, Symonds third 
and so forth), the given order and Worst-Best ranked 
order. These expectations are shown in Table 3. 
 
       Table 3. Expected runs 

Best-Worst Ranked Order 210.66 runs
Given Order 208.75 runs
Worst-Best Ranked Order 194.16 runs
 
To enable us to consider a greater number of 

batting orders, we used our “streamlined method” to 
evaluate about 10,000 line-ups, permuting only the 
last 8 players. We find that the minimum number of 
expected runs is approximately 219 compared with a 
maximum of almost 229. These results are higher 
than those achieved before the streamlining and are 
most likely due to the restriction on the number of 
wickets than can be lost per over. Table 4 shows a 
comparison of results achieved using the 
straightforward and streamlined methods. The line-
up used in generating tables 1-4 uses players (like 
Mark Waugh) whom no longer play for Australia, 

but each player has played at least 10 games at the 
international level. Suppose, however, that we wish 
to replace 4 players with current or new players, like 
Hussey and Hodge. Table 5 shows the estimated 
probability distributions using the same source data. 
(Here, each player’s data only includes at least 2 
games and 50 balls bowled to him, to allow for 
newer players, as shown in Table 6 except for Stuart 
MacGill). Stuart MacGill normally bats after Glen 
McGrath when both are playing for Australia. This 
also limits the amount of data available on his 
performance. 
 
Table 4. Expected runs using both methods. 

Player Runs/Inn 
Straightforward 

Runs/Inn 
Streamlined 

Symonds 244.04 249.29 
Gilchrist 263.89 269.91 
Waugh, M 202.15 203.06 
Hayden 216.39 217.92 
Ponting 177.64 178.88 
Slater 254.57 258.88 
Bichel 148.66 165.98 
Lee 61.31 69.63 
Gillespie 53.95 68.96 
McGrath 13.60 23.68 
Warne 120.13 134.19 

 
                    Table 5. Estimated player probabilities 

P0 P1 P2 P3 P4 P6 Pd Name 
.553 .313 .048 .010 .075 .003 .015 JL Langer 
.563 .273 .059 .012 .080 .011 .021 ML Hayden 
.545 .295 .060 .012 .073 .013 .022 RT Ponting 
.412 .471 .039 .039 .039 .000 .039 BJ Hodge 
.522 .317 .064 .016 .074 .006 .022 MEK Hussey 
.514 .312 .072 .007 .083 .013 .027 A Symonds 
.561 .231 .055 .014 .128 .011 .028 AC Gilchrist 
.556 .324 .072 .003 .039 .005 .052 SK Warne 
.527 .332 .072 .006 .027 .033 .084 B Lee 
.714 .286 .000 .000 .000 .000 .286 SCG MacGill 
.688 .234 .047 .000 .031 .000 .250 GD McGrath 
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                                        Table 6. Expected runs and player rankings 
Name Exp_Runs Rank Balls Innings 
AC Gilchrist 281.34 1 4203 117 
A Symonds 259.20 2 2096 57 
MEK Hussey 242.79 3 312 7 
RT Ponting 241.75 4 5056 112 
ML Hayden 240.17 5 3401 73 
BJ Hodge 239.58 6 51 2 
B Lee 232.00 7 334 28 
JL Langer 222.43 8 400 6 
SK Warne 192.78 9 635 33 
GD McGrath 128.37 10 64 16 
SCG MacGill 80.06 11 7 2 

 
Table 6 shows, like Table 2, the expected runs 

if these players made up the entire line-up (using the 
streamlined method with a maximum of 1800 runs 
allowed).  

Using this data we compute the expected runs 
from a convenient subset (163,724 samples at this 
time) of batting line-ups, namely, those line-ups with 
the openers and some with the third batsman already 
determined. Table 7 shows a brief analysis of the 
data. It is interesting to note that the mean is almost 
exactly 235, which is also the current value of the 
G50 constant in the Duckworth/Lewis method for 
target resetting. Figure 1 shows a histogram of these 
results. We note that the distribution is unimodal, 
has small variance, but is highly skewed with large 
number of outliers. The line-ups that produced the 
minimum and maximum number of expected runs 
(among the 163,724 lineups studied) are shown in 
Table 8. 
 

             Table 7. Descriptive statistics 
Mean 235.1 
Sample Variance 95.2 
Mode 209.8 
Count 163724 
Minimum 187.6 
First Quartile 234.1 
Median 236.9 
Third Quartile 239. 5 
Maximum 257.6 
Range 70.0 
IQR 5.4 

 
DISCUSSION 
 
Cricket is a game with many variables affecting the 
outcome; the weather, the pitch, the players and 
even the spectators at the match. Attempting to

 
Figure 1. Histogram of expected number of runs for 164,724 line-ups taken from the 
players listed in Table 6. 
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model a cricket match requires reducing these many 
variables down to a manageable and quantifiable 
subset. In this paper we have attempted to simplify 
these many variables down to the batsman's average 
offensive ability versus every bowler they have 
faced (within the available data set). We have 
developed a straightforward and a streamlined 
approach for evaluating the distribution and thus, the 
expected number of runs a line-up should produce 
against average bowling. The large number of 
possible line-ups makes a “straightforward” 
approach to finding the optimal batting order 
virtually impossible to achieve in a reasonable time 
frame, however smaller subsets could be calculated 
rather quickly. This means that the most practical 
use of our work would be in determining the order 
of three or four batsmen with the rest of the line-up 
fixed. Our work could also be used to quantify the 
effect of the "super-sub" under the new laws of the 
One-Day game. 
 
Table 8. Minimum/maximum run batting orders 

Batsman Minimum Maximum 
1 JL Langer JL Langer 
2 ML Hayden ML Hayden 
3 BJ Hodge A Symonds 
4 GD McGrath AC Gilchrist 
5 SK Warne SK Warne 
6 SCG MacGill MEK Hussey 
7 AC Gilchrist B Lee 
8 B Lee SCG MacGill
9 MEK Hussey GD McGrath 
10 RT Ponting RT Ponting 
11 A Symonds BJ Hodge 

 
We find it interesting that the results of our 

model show a mean expected number of runs scored 
of almost exactly 235. Since we were not able to 
study all 40 million line-ups, we have shown for the 
set of players considered that the best batting order 
can expect to produce at least 70 runs more than the 
worst possible line-up. Figure 1 suggests that it is 
easier to find a very poor line-up than it is to find a 
very good one. We expect the result of allowing for 
slight variations in player ability will have a similar 
effect to such variations in baseball player ability as 
studied by Sokol (2003). That is, that while our 
technique will find (given enough computation time) 
the line-up with the greatest expected number of 
runs, slight variations in player performance ability 
would result in a different line-up being “better”. In 
other words, the best line-up is not robust. However, 
any of a set of nearly optimal line-ups would be 
indistinguishable within the limit of accuracy of the 
input probabilities. 
 

CONCLUSIONS 
 
Whilst we have done a large number of calculations 
and streamlined the code, we see that it is unlikely 
that the calculations could be finished (on a single 
computer) within a reasonable timeframe. However, 
we see other opportunities for future work and 
applications, for example: 1) We could study 
optimal batting order and impact of batting order on 
probability of winning a game. Although we may 
not perform a full enumeration, there are ideas 
which would allow us to study likely subsets (e.g. 
Swartz); 2) The data collection in One-Day Cricket 
is more difficult than baseball. We would like to 
obtain more data and more team information, but 
perhaps we could investigate ways of interpolating 
using available data; 3) We could expand our model 
to include bowling ability (defence) as was done for 
baseball (e.g. Bukiet, 1997); 4) A further extension 
of the model would be to compute the probability of 
winning a game and the effect of using one player 
instead of another (e.g. the “rotation” policy effect). 
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KEY POINTS 
 
• Batting order does effect the expected runs 

distribution in one-day cricket. 
• One-day cricket has fewer data points than 

baseball, thus extreme values have greater 
effect on estimated probabilities. 

• Dismissals rare and probabilities very small by 
comparison to baseball. 

• Probability distribution for lower order batsmen 
is potentially skewed due to increased risk 
taking. 

• Full enumeration of all possible line-ups is 
impractical using a single average computer. 
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