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ABSTRACT  
Animal biologists commonly use continuous time Markov chain models to describe patterns of animal 
behaviour. In this paper we consider the use of these models for describing AFL football. In particular we 
test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed 
values associated with each transition. Using a simple event categorisation it is found that a semi-Markov 
chain model is appropriate for this data. This validates the use of Markov Chains for future studies in 
which the outcomes of AFL matches are simulated. 
 
KEY WORDS: Homogeneity in time, sequential dependency, semi-Markov process, football. 

 
INTRODUCTION 
 
Animal biologists frequently perform ethological 
studies creating models in order to provide an 
accurate description of animal behaviour. The 
effects of various factors can then be studied in 
terms of the parameters of these models. The data 
often consists of continuous time records of 
behaviour which can be described using Markov 
chain models which take into account both the 
duration and the sequence of acts. Using these 
models it is possible to determine whether 
behaviour is homogeneous during an observation 
period, and, when behaviour is not homogeneous, 
changes in the model parameters can be used to 
determine when and how behaviour changes. Sports 
can be studied in a similar manner, using notational 
analysis to collect the data as described in Forbes 
and Clarke (2004) and Forbes (2006). If changes in 
behaviour can be linked to successful outcomes we 
will have a valuable tool for player development.    

Markov chains have been previously used to 
model sports events (Bellman, 1977; Bukiet et al., 

1997; Forbes, 2006; Forbes and Clarke 2004; 
Hirotsu, 2002; Hirotsu and Wright, 2003a; 2003b). 
Forbes and Clarke (2004) and Forbes (2006) created 
discrete Markov chains for AFL football, but this is 
probably the first time that an attempt has been 
made to model AFL football using CTMCs, because 
the data was not previously available. The model is 
similar to the above animal behaviour models; 
however, in addition to associating times with 
events we also have distances and speeds.  
 
METHODS 
 
CTMC Assumptions 
There are a number of assumptions associated with 
a continuous time Markov chain. The Markov 
property implies that transitions are independent of 
the time for previous transitions as well as the type 
of previous transitions. In addition it is assumed that 
the characteristics of the transitions have 
exponential distributions for each state. In animal 
behaviour it is commonly found that the times for 
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behaviours (bouts) do have an exponential 
distribution.  

In our analysis of AFL football we refer to the 
states of the Markov chain as events, such as a 
Kick. We have the times for each transition between 
events as well as the distance and speed associated 
with each transition, so we shall endeavour to 
include all three of these transition characteristics 
into our CTMC model. It is unlikely that these 
variables will have exponential distributions 
because these dimensions are confined by field size 
and shape and because there is a grouping of 
behaviours under each of the events (e.g. a Kick 
may be long, short, a ground kick, a clanger, a kick 
to advantage or an ineffective kick). Also it may be 
that we do not have a first-order Markov model in 
that the transition probabilities may not be 
independent of the previous sequence of events. 
This paper will investigate these issues in detail. 

Processes which do not have exponentially 
distributed transition times are called Semi-Markov 
chains. A common distribution in the animal 
behaviour literature is a displaced exponential 
distribution which allows for a non-zero minimum 
value. The gamma distribution has also been used to 
describe the duration of animal behaviours, 
allowing for a mixture of exponential distributions. 
Log-normal distributions are also used and even 
normal distributions which have been censored at 
zero. All these possible distributions can be tested 
for our time, distance and speed variables. Of 
course, a multivariate distribution allowing for 
correlations between these three variables should 
also be considered. 

Haccou and Meelis (1992) recommend the 
following process for analysing behavioural data in 
animals.  

1) Search for homogeneous periods in order to 
reduce the error variances in the model. In 
particular it is possible to determine whether 
changes are abrupt or gradual.  
2) Analysis in the presence of gradual changes 
require special modelling but where there are 
abrupt changes the data should be divided into 
homogeneous subphases and analysed as 
indicated below for each subphase. 
3) Determine suitable distributions for the time, 
distance and speed variables and test the 

sequential dependence properties of the process. 
Also search for outliers. 
4) If the distributions are exponential and there 
is first-order sequential dependency a standard 
Markov chain analysis is possible.  
5) If the distributions are a mixture of 
exponential or gamma distributions and there is 
first-order sequential dependency the behavioural 
categories (Markov states) may have to be 
subdivided before a standard Markov chain 
analysis is possible.  
6)  If the distributions are not exponential or 
mixtures of exponential or gamma distributions, 
but there is first-order sequential dependency, a 
semi-Markov chain analysis is possible.  
7) If there is higher order sequential dependency 
ad hoc analysis methods are required. 

 
We will follow this process, in the analysis 

below, using a data set derived from four AFL 
matches during the 2004 season. 
 

Table 2. Description of event codes. 
Event code Event Description 
BEHI Behind 
BUBO Ball up bounce 
CEBO Centre ball up 
HB Hand ball 
KI Kick in 
KK Kick 
THIN Throw in 

 
The data 
The data was collected by Champion Data, the 
official provider of AFL statistics, for four matches 
during the 2004 season. These matches, the venues 
and the results are described in Table 1. In this 
paper we apply the ideas of Haccou and Meelis 
(1992) in this context using the event definitions 
shown in Table 2. These event definitions are over-
simplistic in that they do not identify the teams 
involved in each transition. However, this simple 
event definition does allow us to test the 
assumptions of the CTMC. Forbes (2006) and 
Forbes and Clarke (2004) use a different set of 
event definitions in their work. Their definitions 
identify the teams involved in each transition; 
however,    they    do    not    differentiate   between  

 
  Table 1. Description of data: 4 AFL matches in the 2004 season. 
Venue Home 

Team 
Away Team Winner Home 

Team Score 
Away 

Team Score 
Kardinia Park, Geelong Geelong St Kilda Geelong 101 94 
Subiaco Oval, Perth West Coast Western Bulldogs West Coast 106 57 
Melbourne Cricket Ground Melbourne Hawthorn Melbourne 107 63 
Sydney Cricket Ground Sydney Kangaroos Kangaroos 112 118 
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Table 3. Transition matrix and average event statistics. 
 To Events  

From Events BEHI BUBO CEBO HB KI KK THIN Total Pct % (SD) 
BEHI 0 0 0 0 85 0 0 85 2.93 
BUBO 1 14 0 35 0 41 3 94 3.24 
CEBO 0 16 0 61 0 49 0 126 4.34 
HB 0 16 0 385 0 511 29 941 32.44 
KI 0 0 0 20 0 64 0 84 2.90 
KK 85 38 112 381 0 738 90 1444 49.78 
THIN 0 11 0 61 0 48 7 127 4.38 
Total 86 95 112 943 85 1451 129 2901 100.00 
Mean Time 18.41 11.85 9.16 4.48 6.73 9.51 11.87 8.22 (8.66) 
Mean Distance 36.22 9.33 9.45 13.37 7.37 37.51 18.40 25.80 (20.35) 
Mean Speed 2.29 1.10 1.28 4.60 2.68 6.54 2.23 5.06 (4.87) 

 Abbreviations: see Table 1. Pct = Percentage, SD = standard deviation.  
 

handballs and kicks, making the modelling of 
distances, times and speeds problematic for these 
events.    

In the following analysis we start with an 
exploratory analysis in which we examine the 
assumption of an exponential distribution for time, 
distance and speed for each type of event. 
Thereafter we test for time inhomogeneity in our 
data and then test the nature of any time 
dependencies.  
 
RESULTS 
 
Exploratory data analysis 
A transition matrix was derived using the above 
event codes and the average times (sec), distances 
(m) and speeds (m·sec-1) were calculated for each 
event as shown in Table 3. Clearly kicks (KK) are 
the most common event followed by handballs 
(HB). The mean times, distances and speeds vary 
markedly for the different types of events as 
expected. 

The histograms in Figure 1 show the 
distributions for time, distance and speed when all 
event types are combined. A right skew distribution 
is exhibited in all cases with skewness coefficients 
of 2.40 for time, 0.85 for distance and 2.51 for 
speed. In particular, the lumpiness of the distance 
distribution demonstrates the effect of the different 
events. Figure 2 shows a time plot for the events for 
each of the four matches. This plot shows obvious 
differences between the four matches. The Geelong 
match shows relatively few behinds except in the 
last quarter. The number of behinds peaked in the 
middle of the match for the Perth and in the first 
half of the Melbourne game. The number of goals is 
related to the number of centre bounces (CEBO), 
with three of the four games showing relatively few 
goals in the last few minutes of the match. Kicks 

were relatively rare for the Sydney game while 
Kick-Ins were relatively rare for the Geelong game. 
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Figure 1. Distributions for event values: Time, 
Distance and Speed. 
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Figure 2. Event Sequences for each of the four venues. 

 
Figure 3 compares the time, distance and 

speed distributions for each match using a 3 
parameter LogLogistic distribution to describe each 
distribution. This is a versatile distribution shown 
below to describe the data well. There are obviously 

quite small differences between the matches, and 
the nonparametric Kruskal-Wallis tests in Table 4 
suggest that there is a significant difference only for 
speed, with a slower game played in Sydney than in 
Melbourne.  
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Figure 3. Distribution of event times, distances and speeds for the four venues. 
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                     Table 4. Means (±SD) for each venue. 
  Venue   
Variable Geelong Melbourne Perth Sydney 
Time (sec)  8.37 (.32) 7.70 (.28) 8.46 (.33) 8.84 (.37) 
Distance (m) 26.06 (.76) 27.29 (.77) 25.49 (.72) 24.59 (.77) 
Speed (m·sec-1) 4.99 (.19) 5.58 (.18) 5.14 (.17) 4.88 (4.76) * 

           * p < 0.05 compared with Melbourne. 
 
Figure 4 compares the distribution of event 

times, durations and speeds for each type of event, 
again using a 3-parameter LogLogistic distribution. 
There are clearly very significant differences 
between the various types of events (Kruskal 
Wallis: p<0.001). Moreover it is clear that an 
exponential distribution is not appropriate in most 
cases.  
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Figure 4. Distribution of event times, distances and 
speeds for the seven events. 

The goodness of fit for a set of four common 
survival distributions was studied using the 
Anderson-Darling statistic. This statistic measures 
the area between the fitted distribution function and 
the nonparametric empirical distribution function. 
As shown in Table 5, the 3-parameter LogNormal 
distribution (LN) and the 3-parameter Loglogistic 
(LL) distributions gave the most consistently good 
results. The 3-parameter Gamma (G) and the 3-
parameter Weibull (W) distributions were less 
appropriate in most instances.  

Table 6 shows the correlations between our 
time, distance and speed variables for each type of 
event. Spearman rank correlations were used on 
account of the lack of normality in most cases. The 
correlations are particularly interesting for Kick-Ins, 
with longer kicks apparently associated with shorter 
times, resulting in a much quicker speed. This is 
expected since a run with the ball is more likely 
before a short kick than before a long kick.  

 
Analysis for time inhomogeneity in the case of 
abrupt changes 
Visual methods can be used for detecting 
inhomogeneity in time. Our time plots give some 
indication of inhomogeneity in time and between 
matches in that Figure 2 suggests that the frequency 
of events varies over time and between matches. 
However, Table 4 showed that the mean time and 
duration were similar for all the matches with a 
barely significant difference in the case of speed. 
This suggests that any inhomogeneity in our 
CTMCs will be confined to the transition 
probabilities. Hypothesis tests can be used to 
confirm whether this is true, using changes in mean 
termination rates or in the sequence of transitions to 
detect any time inhomogeneity.  

If the number of change points is known a 
Kruskal-Wallis test can be used to test whether the 
distribution of values for a specific event differs 
between the differing periods. This test makes no 
assumption about the distribution of values for a 
specific event. We compared the time, distance and 
speed distributions for each event between the 
quarters in any match and found no significant 
differences for any event when the Bonferroni 
correction was applied (α = 0.05/28). This confirms 
that   there   is   no   time inhomogeneity in the time, 
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          Table 5. Ranking of distributional fit using the Andersen-Darling statistic. 
Event Time Distance Speed 
 LL G W LN LL G W LN LL G W LN 
THIN 1 3 4 2 1 3 4 2 1 3 4 2 
KK 1 4 3 2 3 2 4 1 4 1 3 2 
KI 2 3 4 1 3 2 1 4 3 2 1 4 
HB 1 3 4 2 1 3 4 2 2 3 4 1 
CEBO 1 3 4 2 4 2 1 3 4 3 1 2 
BUBO 1 3 4 2 1 3 4 2 1 3 4 2 
BEHI 4 2 1 3 1 3 4 2 1 3 4 2 
Mean Rank 1.6 3.0 3.4 2.0 2.0 2.6 3.1 2.3 2.3 2.6 3.0 2.1 

 
distance and speed distributions. 

Change points in the transition matrix can be 
tested using multinomial logistic regression. In 
animal behaviour studies it is not usual to allow a 
transition from a state to itself, however, we shall 
allow this in AFL football so that we can track the 
passage of the ball from player to player. On the 
other hand there are some transitions that are not 
possible in AFL football (e.g. a Kick-In is the only 
event that can follow a Behind), so we will ignore 
all transitions with a frequency of zero in Table 3. 

For the sake of simplicity we again consider 
the end of each quarter as possible change points for 
each of the four matches. Our multinomial logistic 
regression analysis shows no significant match or 
quarter effect, suggesting that the transition matrix, 
like the transition variables, is homogeneous in 
time. As a result we shall use our complete data set 
for all four matches to test for sequential 
dependency.  

 
Tests of sequential dependency 
In a continuous time Markov chain (CTMC) a first-
order dependency in the sequence of states is 
assumed. This means that the transition probability 
for states A and B in time ∆ is independent of the 
sequence of preceding states. This implies that the 
transition durations are independent for a given 
sequence of states. Dependencies may be short-
term, long-term, or periodic in nature. They may 

relate to the sequence of states or dependencies 
between transition values and preceding and/or 
following states, or they may relate to correlations 
with transition values in subsequent transitions. In 
the case of animal behaviour transitions from state 
A to itself cannot occur, but as mentioned above 
this is not true in the case of AFL football. Instead 
there are several other transitions that are 
impossible as exhibited in Table 3.  

Deviation from first-order dependency in a 
sequence of states is commonly tested with a chi-
squared test. This test has reasonable power, 
however, it does not necessarily detect 
dependencies of higher than second order. 
Multinomial logistic regression was therefore used 
to model the occurrence of event Y based on the 
two previous events (X and A). It was found that 
only the most recent event had a significant 
influence [χ2(36) = 762.0, p<0.001] while the effect 
of the previous event was not significant [χ2(42) = 
44.6, p = 0.384].  

The next form of dependency occurs when 
the transition value distributions depend on the 
preceding state. This can be tested using a Kruskal-
Wallis test, making no assumptions regarding the 
nature of the value distributions. Not unsurprisingly 
there was a strong relationship between the type of 
previous event and the values for time [χ2(6) = 20.7, 
p = 0.002], distance [χ2(6) = 186.7, p<0.001] and 
speed [χ2(6) = 210.6, p<0.001].  

 
           Table 6. Spearman rank correlations for transition values (**  p< 0.001). 

 Correlations 
Event Time*Distance Time*Speed Distance*Speed 
BEHI .030 -.604 (**) .717 (**) 
BUBO .072 -.577 (**) .697 (**) 
CEBO .129 -.435 (**) .798 (**) 
HB .213 (**) -.659 (**) .533 (**) 
KI -.248 (**) -.265 (**) .998 (**) 
KK .438 (**) -.629 (**) .356 (**) 
THIN .069 -.633 (**) .415 (**) 
All .414 (**) -.520 (**) .520 (**) 
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Relations between subsequent transitions for 
the same and for different states produce a further 
form of dependency found in (semi-)Markov 
models, which can be measured using 
autocorrelation. Autocorrelations were initially 
calculated for all types of events simultaneously. 
For the time variable there was a very weak but 
significant positive autocorrelation of 0.05 for every 
second transition, suggesting that shorter events, 
such as handballs, would alternate with other types 
of event such as kicks. This theory is supported by 
the transition matrix in table 3. For the distance 
variable there was a weak but significant negative 
autocorrelation of 0.07 for successive events (lag 
one), again suggesting a tendency to alternate 
handballs and kicks, while for the speed variable 
there was a weak but significant negative 
autocorrelation of 0.05 for successive events and a 
stronger positive autocorrelation of 0.12 for every 
second event. Although all these correlations are 
weak they do tell us something interesting about the 
game. It is expected that these correlations will be 
automatically incorporated in the model through the 
transition matrix. 

When autocorrelations are considered for 
each type of event separately, only in the case of 
Kicks do we obtain any significant autocorrelations. 
The time taken for consecutive kicks has a weak but 
significant negative correlation of 0.15, suggesting 
that short duration kicks alternate with longer 
duration kicks. However, the speed for consecutive 
kicks has a weak but significant positive correlation 
of 0.10. Although weak, these correlations probably 
need to be incorporate in the modelling process. 
 
DISCUSSION AND CONCLUSION 
 
Our analysis of four 2004 AFL football matches has 
shown that inhomogeneity is unlikely to be a 
problem within an AFL football match. There were 
similar processes for all four matches, perhaps on 
account of the similar scores for the four matches. 
However, for our definition of events there were 
marked differences in time, distance and speed 
requiring a separate analysis for each type of event. 
The distributions for the time, distance and speed 
variables varied for the different types of event, 
however, the 3-parameter LogLogistic and the 3-
parameter LogNormal distributions tended to give 
the best fit. There were strong correlations between 
these variables for most of the events. Finally, it 
was confirmed that a first-order sequential 
dependency  existed  for  the  events,   and   that  for  
 
 

successive kicks there was a weak correlation for 
the speed and time variables.  

These results suggest that a semi-Markov 
model is appropriate since the distributions are not 
usually exponential or mixtures of exponential or 
gamma distributions, but there is first-order 
sequential dependency. This model could be used 
for simulation purposes. An initial centre bounce 
(CEBO) would result in Ball-up Bounce (BUBO) a 
handball (HB) or a kick (KK) with respective 
probabilities of 13%, 48% and 39%. The associated 
time, distance and speed could be generated using 
the appropriate CEBO three-parameter log-normal 
distributions, allowing appropriate correlations 
between the times, distances and speeds. Similarly, 
results for all ensuing game events could be 
simulated. Through changes to the transition matrix 
and/or other model parameters, the resulting model 
could be used in order to predict the effect of rules 
changes and changes in play strategy. 

However, although the total number of goals 
and behinds would be known, the final score and 
the winner would not be known. In order to develop 
a more useful model all that is needed is a split of 
the events to identify the teams involved in each 
transition. The current work suggests that a semi-
Markov model would be appropriate for this 
extended model, allowing a simulation similar to 
that described above, from which scores and the 
winning team could be determined for each 
simulated game. 

In the above analysis we have associated 
distances, speeds and times with each transition in 
time. The addition of directions for each transition 
would make it possible for a spatial simulation to be 
performed. In this case it would make sense to 
define the events according to spatial zone (within 
the field) as well as activity. An alternative 
approach would have been to use the quarters of the 
field as the events, again using time, distance, speed 
and direction to describe each transition. This 
approach would also not allow the simulation of 
match outcomes but it would help coaches and 
players to better understand the spatial patterns of 
play. A further extension to this work could allow 
continuous changes in the model parameters over 
time with the possible inclusion of covariates in the 
models for the transition probabilities. 
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KEY POINTS 
 
• A comparison of four AFL matches suggests 

similarity in terms of transition probabilities for 
events and the mean times, distances and 
speeds associated with each transition. 

• The Markov assumption appears to be valid. 
• However, the speed, time and distance 

distributions associated with each transition are 
not exponential suggesting that semi-Markov 
model can be used to model and simulate play. 

• Team identified events and directions 
associated with transitions are required to 
develop the model into a tool for the prediction 
of match outcomes. 
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