Research article

Reliability and validity of physiological data obtained within a cycle-run transition test in age-group triathletes

Veronica Vleck ${ }^{1} \boxtimes$, Gregoire P. Millet ${ }^{2}$, Francisco Bessone Alves ${ }^{1}$ and David J. Bentley ${ }^{3}$
${ }^{1}$ CIPER, Faculty of Human Kinetics, Technical University of Lisbon, Estrada da Costa, Cruz Quebrada-Dafundo, Portugal; ${ }^{2}$ University of Lausanne, ISSUL Institute of Sport Sciences, Department of Physiology, Faculty of Biology and Medicine, Batiment Vidy, Lausanne, Switzerland; ${ }^{3}$ The School of Medical Science, the University of Adelaide, Adelaide, Australia

Abstract

This study examined the validity and reliability of a sequential "Run-Bike-Run" test (RBR) in age-group triathletes. Eight Olympic distance (OD) specialists (age $30.0 \pm$ 2.0 years, mass $75.6 \pm 1.6 \mathrm{~kg}$, run $\mathrm{VO}_{2 \max } 63.8 \pm 1.9$ $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$, cycle $\mathrm{VO}_{2 \text { peak }} 56.7 \pm 5.1 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$) performed four trials over 10 days. Trial $1\left(\mathrm{TRVO}_{2 \text { max }}\right)$ was an incremental treadmill running test. Trials 2 and 3 $\left(\mathrm{RBR}_{1}\right.$ and $\left.\mathrm{RBR}_{2}\right)$ involved: 1) a $7-\mathrm{min}$ run at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ $\left(\mathrm{R}_{1}\right)$ plus a 1 -min transition to 2) cycling to fatigue (2 $\mathrm{W} \cdot \mathrm{kg}^{-1}$ body mass then 30 W each 3 min); 3) $10-\mathrm{min}$ cycling at $3 \mathrm{~W} \cdot \mathrm{~kg}^{-1}\left(\mathrm{~B}_{\text {submax }}\right)$; another $1-\mathrm{min}$ transition and 4) a second $7-\mathrm{min}$ run at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}\left(\mathrm{R}_{2}\right)$. Trial 4 (TT) was a $30-\mathrm{min}$ cycle $-20-\mathrm{min}$ run time trial. No significant differences in absolute oxygen uptake $\left(\mathrm{VO}_{2}\right)$, heart rate (HR), or blood lactate concentration ([BLA]) were evidenced between RBR_{1} and RBR_{2}. For all measured physiological variables, the limits of agreement were similar, and the mean differences were physiologically unimportant, between trials. Low levels of test-retest error (i.e. ICC $<0.8, \mathrm{CV}<10 \%$) were observed for most (logged) measurements. However [BLA] post R_{1} (ICC 0.87 , CV 25.1\%), [BLA] post $\mathrm{B}_{\text {submax }}$ (ICC 0.99 , CV 16.31) and [BLA] post R_{2} (ICC 0.51 , CV 22.9%) were least reliable. These error ranges may help coaches detect real changes in training status over time. Moreover, RBR test variables can be used to predict discipline specific and overall TT performance. Cycle $\mathrm{VO}_{2 \text { peak }}$, cycle peak power output, and the change between R_{1} and R_{2} (del$\operatorname{taR}_{1} \mathrm{R}_{2}$) in [BLA] were most highly related to overall TT distance ($\mathrm{r}=0.89, \mathrm{p}<0.01 ; \mathrm{r}=0.94, \mathrm{p}<0.02 ; \mathrm{r}=0.86, \mathrm{p}$ <0.05, respectively). The percentage of $\mathrm{TR} \mathrm{VO}_{2 \max }$ at 15 $\mathrm{km} \cdot \mathrm{h}^{-1}$, and deltaR $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{HR}$, were also related to run TT distance ($\mathrm{r}=-0.83$ and 0.86 , both $\mathrm{p}<0.05$).

Key words: Multi-discipline, reproducibility, time-trial, test, adaptation.

Introduction

Coaches require a reasonable degree of confidence that the changes in test measures that are obtained by their athlete(s) are due to training adaptations rather than due to measurement error (Atkinson and Nevill, 1998). The scores that are obtained on a laboratory test must also
adequately reflect the needs of the sport. Therefore, the physiological measures that are obtained within any "sport specific test" should be shown to be reliable, and to be relevant to performance in that sport.

Although triathlon involves a sequential swim, cycle and run; swim test results have been shown not to be significantly related to triathlon performance (Millet et al., 2003). In contrast, physiological data obtained from both isolated (maximal incremental and submaximal) cycle or run tests have successfully predicted triathlete race or time trial performance (Hue, 2003; Schabort et al., 2000; Zhou et al., 1997). Schabort et al. (2000), for example, found cycle and run blood lactate concentration ([BLA]) at $4 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$ and $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, respectively; cycle peak oxygen uptake $\left(\mathrm{VO}_{2 \text { peak }}\right)$; and peak treadmill running velocity $\left(\mathrm{TRV}_{\max }\right)$ to be the best predictors of Olympic distance (OD) (1.5 km swim, 40 km cycle, 10 km run) triathlon performance in South African National Squad triathletes. End cycle [BLA] and total distance run within a $30-\mathrm{min}$ cycle- $20-\mathrm{min}$ run combined laboratory time trial were also shown to account for 93% of the variation in draft-legal OD triathlon finishing times of Elites (Hue, 2003). However, time trials do not provide the scientist or coach with information regarding peak workload or the anaerobic threshold - both of which measures can be important for training prescription and analysis.

As adaptation to the cycle-run transition has been shown to affect both triathlon run pacing and, therefore, finishing position (Vleck et al., 2008), assessment of the ability to run after cycling (Millet and Vleck, 2000) is also an important and sports specific component of the analysis of a triathlete (Vleck and Alves, 2011). Millet et al. (Millet et al., 2003; Millet and Bentley, 2004) were the first to assess the relationship between triathlete race performance and physiological variables obtained from a sequential, laboratory-based, "run-bike-run" (RBR) test. The latter comprises submaximal running, maximal and then submaximal cycling, followed by an additional submaximal running bout. The test is unique in so far as it allows both for important physiological variables that are normally obtained from isolated tests (such as cycle $\mathrm{VO}_{2 \text { peak }}$ and peak power output [Schabort et al., 2000]) to be determined, and measurement of the extent to which the athlete adapts to a cycle-run transition (T2). As both running bouts during the sequential RBR are conducted at the same speed, the first run (R1) of the test acts as a control to which physiological data from the second, post-
cycle, run (R2) (such as running economy) can be compared, and this allows for the efficiency of running after cycling to be established.

Both cycle $\mathrm{VO}_{2 \text { max }}(\mathrm{r}=-0.80, \mathrm{p}<0.001)$ and cycle peak power output $\left(\mathrm{W}_{\text {peak }}\right)(\mathrm{r}=-0.85, \mathrm{p}<0.001)$, obtained within the Millet RBR test, have been found to be significantly related to the OD performance times of French National Squad triathletes. However, certain aspects of the test are open to modification. Firstly, both runs are conducted at a speed corresponding to the subject's current personal best OD triathlon run time, although set workloads are usually used to measure running economy (Saunders et al., 2004a; 2004b). Secondly, the protocol that is used to determine cycle $\mathrm{VO}_{2 \text { max }}$ and $\mathrm{W}_{\text {peak }}$ within the incremental "bike" of the RBR (i.e. 3-minute increments of 70 W from an initial workload of 70 W until 280 W , and then 35 W increases every 2 minutes until exhaustion) has not been validated for that purpose. Thirdly, the submaximal cycle is conducted at 80% of the $\mathrm{W}_{\text {peak }}$ that was arrived at within the preceding incremental cycle section. The physiological responses to cycling at said workload has not yet been specifically related to cycling and overall triathlon performance, as has power output standardised to body mass (Schabort et al., 2000). Power output standardised to body mass may in itself be an easier measure than power at $80 \% \mathrm{~W}_{\text {peak }}$ to use for tracking changes in cycling economy over time.

Moreover, although prior cycling appears to have more of an adverse affect on subsequent running in mid-dle-level, "age-group", triathletes than in elite triathletes (Millet et al., 2001), almost all of the cycle-run transition test research to date (see Vleck and Alves [2011] for bibliography) has involved National Squad athletes.

The focus of this study, therefore, was to investigate the reliability and validity of a version of the Millet laboratory-based sequential "Run-Bike-Run" (RBR) transition test (Bentley et al., 2005), that has been modified so as to address some of the aforesaid limitations, in well trained age-group male triathletes. The modified RBR test incorporates aspects of both Millet et al.'s and Schabort et al.'s approach (Millet et al., 2000; 2001; 2003; Millet and Bentley, 2004; Schabort et al., 2000). It still involves submaximal running, maximal then submaximal cycling, and an additional submaximal running bout. However, both runs are conducted at a standardised speed of 15 $\mathrm{km} \cdot \mathrm{h}^{-1}$ - the [BLA] after which was shown by Schabort et al. (2000) to be related to OD performance time. Moreover, the protocol of the incremental cycle section of the RBR has been amended to one that has been previously validated for the determination of $\mathrm{W}_{\text {peak }}$ in cyclists (Bentley and McNaughton, 2003) (i.e. to one with 30 W increments every 3 min). Additionally, the submaximal cycle section has also been standardised relative to body mass but to $3 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$ rather than the $4 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$ the [BLA] after which was demonstrated to be related to OD performance (Schabort et al., 2000) because $4 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$ may prove too demanding for age-group athletes.

Methods

The experiment involved four trials over 10-days, each
separated by at least 48 h . The testing comprised: (1) an incremental treadmill running test to exhaustion ($\mathrm{TRVO}_{2 \max }$); (2) and (3) the "Run-Bike-Run" trial (termed RBR_{1} on its first occasion and, when repeated, RBR_{2}); and 4) a laboratory based 30 -minute cycle- $20-\mathrm{min}$ run distance trial (TT). $\mathrm{TRVO}_{2 \text { max }}$ was completed first and the remaining tests were performed in randomised counterbalanced order.

Subjects

Eight well-trained male age-group triathletes specialising in OD competition gave their written informed consent to participate in the experiment. All the subjects were both in active pre-competition training (of approximately 12 $\mathrm{h} \cdot \mathrm{wk}^{-1}$), and were familiarised with the exercise test procedures prior to participation in the study.

During the 48 h prior to each test the athletes completed only low-volume, low-intensity training; and standardised said training as well as their food and fluid intake. They were further encouraged to drink $150-200 \mathrm{ml}$ water every 20 minutes of the 2 hours prior to each test start. All the tests were conducted at the same time of day and under the same environmental conditions. Body mass was assessed immediately prior and post-test to assess whether any significant change in hydration levels had taken place.

The study was conducted in accordance with the 1975 Declaration of Helsinki and approved by the local Institutional Research Ethics Committee.

Procedures

Incremental running test (TRVO 2max)

The $\mathrm{TRVO}_{2 \text { max }}$ was conducted on a Powerjog treadmill (Powerjog, UK) and was preceded by a 5 -minute warm up at $8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and stretching. The test commenced at $8 \mathrm{~km} \cdot \mathrm{~h}^{-}$ ${ }^{1}$ and 1% gradient (Jones and Doust, 1996), and involved increments of $1 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ every 60 s until the athlete could not maintain the required speed. Breath-by-breath analysis of expired air was conducted throughout using a portable gas analysis system ($\mathrm{K}_{4} \mathrm{~B}^{2}$, Cosmed, Rome, Italy), that had been calibrated immediately beforehand according to the manufacturers' instructions. Heart rate (HR) was measured every second using a heart rate monitor integrated with the calorimetry system.

Peak running speed ($\mathrm{TRV}_{\text {max }}$) was recorded as the highest speed completed over 60 s . Treadmill (TR) $\mathrm{HR}_{\text {max }}$ (b•min ${ }^{-1}$) was defined as the highest consecutive 5 s mean during the test. Maximum run oxygen uptake $\left(\mathrm{TRVO}_{2 \max }\right)$ was determined as the highest 30 -s mean value obtained during the incremental run test, when at least two of the criteria of an oxygen uptake plateau (defined as a failure to maintain the slope of the individual specific work-rateVO_{2} relationship), 85% of age-related $\mathrm{HR}_{\text {max }}$, a respiratory exchange ratio of above 1.15 , and/or a rating of perceived exertion of over 18 on the Borg (1982) scale, had been achieved (Midgeley et al., 2007). The ventilatory threshold (VT) was determined from $\mathrm{VE}, \mathrm{VE} / \mathrm{VCO}_{2}$ and $\mathrm{VE} / \mathrm{VO}_{2}$ data averaged over $30-\mathrm{s}$ intervals, by two experienced observers working independently (Davis et al., 1980). The values obtained differed from each other by less than 1%.

Figure 1. Protocol diagram of the study

Run-bike-run (RBR) trials

On two other occasions (RBR_{1} and RBR_{2}) each subject performed a sequential run-bike-run trial (Figure 1) that comprised: 1) submaximal running (R_{1}): 2) a maximal incremental cycle test ($\mathrm{B} \mathrm{VO}_{2 \text { peak }}$); 3) submaximal ($\mathrm{B}_{\text {sub }}$) cycling; and 4) an additional submaximal run (R_{2}). The subjects completed a standardised warm up prior to the test that involved 5 minutes of running at $<10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and 5 minutes of cycling at 150 W , followed by light stretching.
R_{1} of RBR involved a 7 -minute run at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and 1% gradient, in conjunction with breath-by-breath gas analysis. With the gas analyser mask still attached, and within 1 minute, each subject dismounted the treadmill, changed into cycling shoes, and mounted the cycle ergometer (Kingcycle Ltd., High Wycombe, Buckinghamshire, UK). The subject then performed 5 minutes of unloaded cycling before part 2 of the test (i.e. $\left.\mathrm{B}_{\text {maxV }} \mathrm{O}_{2 \text { peak }}\right) . \mathrm{B}_{\text {max }} \mathrm{VO}_{2 \text { peak }}$ commenced with a 3-minute workload of $2 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$. The subject was then required to increase power output by 30 W every 3 minutes until voluntary exhaustion (Bentley and McNaughton, 2003). Pedalling frequency was maintained at ~ 90 rev $\cdot \mathrm{min}^{-1}$ (Lucia et al., 2001). The subject then performed 2 minutes of unloaded cycling before part 3 of the test ($\mathrm{B}_{\text {submax }}$). $\mathrm{B}_{\text {submax }}$ involved 10 minutes of cycling at $90 \mathrm{rev} \cdot \mathrm{min}^{-1}$ and $3 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$. Within 60 s of completion of $\mathrm{B}_{\text {submax, }}$ the subject dismounted the cycle ergometer, changed back into running shoes and mounted the treadmill (which was rolling at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and 1% gradient), ready to start the final test stage. This was a second 7 -minute submaximal running bout $\left(\mathrm{R}_{2}\right)$ at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$.

Fingertip blood lactate concentration ([BLA]) was
measured in duplicate immediately before, and within 30 s of completion of, each of the four sub-sections of RBR (i.e. $\mathrm{R}_{1}, \mathrm{BVO}_{2 \text { peak }}, \mathrm{B}_{\text {submax }}$ and R_{2}, as illustrated in Figure 1), using a Lactate Pro portable lactate analyser (Lactate Pro, Arkray Shiga, Japan) (Pyne et al., 2000). The subjects were reminded of this by a protocol diagram (Figure $1)$, in clear view of both ergometers. During $\mathrm{BV}, \mathrm{O}_{2 \text { peak }}$, $\mathrm{VO}_{2 \text { peak }}, \mathrm{HR}_{\max }\left(\mathrm{b} \cdot \mathrm{min}^{-1}\right)$ and the VT were calculated as previously described (see Incremental running test). Peak power output $\left(\mathrm{W}_{\text {peak }}\right)(\mathrm{W})$ for BVO_{2} was calculated using the equation of Hawley and Noakes (1992):

$$
\mathrm{W}_{\text {peak }}=\mathrm{W}_{\mathrm{f}}+(\mathrm{t} / 180 \mathrm{~s} \times 30 \mathrm{~W})
$$

where $W_{f}=$ power output (W) of last complete stage; $t=$ duration (s) of final non-complete stage; $180 s=$ workload duration (s); and $30 W=$ workload increment (W).

During $\mathrm{B}_{\text {submax }}$, cycle economy ($\mathrm{B}_{-} \mathrm{EC}$) was measured as the ratio of the power output (W) to $\mathrm{VO}_{2}\left(1 \cdot \mathrm{~min}^{-1}\right)$ consumed (Millet et al., 2004). In the last 60 s of R_{1} and $\mathrm{R}_{2}, \mathrm{VO}_{2}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$ was averaged and economy ($\mathrm{EC}_{\mathrm{Run}}$) calculated $\left(\mathrm{VO}_{2} / \mathrm{km} \cdot \mathrm{h}^{-1}\right)$ (di Prampero, 1986).

Cycle-run time trial (TT)

The athletes also completed a laboratory cycling-running time trial (TT) (Hue, 2003). Beforehand, they performed a 5-10 minute submaximal cycle-run warm-up. They were then allowed 60 s to "get up to speed", i.e. a rolling start on the cycle ergometer, before the TT started. The cycle section of the test (B-TT) involved cycling as hard as possible for 30 minutes, without doing a sprint finish (Suriano and Bishop, 2010). The subjects then had 1 min-
ute to "transition" (i.e. change into running shoes and then move) to the treadmill, which was rolling at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and 1% gradient. The run section of TT (R-TT) required the subject to run as far as possible in 20 minutes. The athlete was free to change the treadmill speed throughout.
The distance (m) covered within B-TT, R-TT, as well as total (B-R) TT distance was monitored. Fingertip [BLA] was also assessed, in duplicate, pre B-TT, within the last minute of B-TT, pre R-TT, and immediately on completion of B-R TT.

Statistical analyses

Data are presented as mean $\pm \mathrm{s}$. To allow for easier interpretation, various reliability statistics were used (Atkinson and Nevill, 1998; Hopkins, 2000; Hopkins et al., 2009). For all the physiological measurements in RBR_{1} and RBR_{2} the normality of test-retest differences was tested using the Shapiro-Wilks statistic. Heteroscedasticity was examined by scatterplots of, and by calculating the Pearson's product moment correlation coefficient between, absolute differences and individual athlete means for RBR_{1} and RBR_{2}. As non-normality of distribution was present in some data (i.e. in the differences between RBR_{1} and RBR_{2} for [BLA] post $\mathrm{B}_{\max }$, in [BLA] post $\mathrm{B}_{\text {submax }}$, and in absolute $\mathrm{R}_{2} \mathrm{VO}_{2}$), as was heteroscedasticity (e.g. in the case of the change in [BLA] between R_{1} and R_{2} $\left.\left(\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}\right)\right)$ logarithmic transformation was performed. Differences in measured variables between consecutive trials were then examined using a paired Student's t-test. Coefficients of variation (\%), intra-class correlation coefficients (ICC), coefficients of reliability, and (F-type) 95% limits of agreement $\left(\mathrm{LIM}_{\mathrm{AG}}\right)$ were calculated (Bland and Altman, 1986, 1999) from the log transformed variables where possible.

For the second (validation) part of the study, Pearson's product moment correlation coefficient was used to identify relationships between the physiological variables that were assessed within RBR_{1}, and TT distances (i.e. BTT, R-TT, and B-R TT distance (m)). Multiple linear regression was used to predict triathlon performance from the best physiological correlates/variables obtained in
RBR_{1}, so as to assess which of these might have most influence on said performance.

The "Statistical Package for the Social Sciences" (SPSS, version 17.0, High Wycombe, UK) and an Excel spread sheet (Hopkins, 2009) were used. Statistical significance was set at $\mathrm{p}<0.05$.

Results

The subjects' mean personal best OD times were 2:09:28 $\pm 0: 04: 51 \mathrm{hh}: \mathrm{mm}$:ss (involving 40 km cycle times of 1:09:10 $\pm 0: 04: 13 \mathrm{hh}: \mathrm{mm}$:ss and 10 km run times of 0:41:22 $\pm 0: 02: 53 \mathrm{hh}: \mathrm{mm}: s \mathrm{~s})$. Their mean age, mass, and peak running speeds $\left(\mathrm{V}_{\max }\right)$ were 30.0 ± 2.0 years, $75.6 \pm$ 1.6 kg , and $19.7 \pm 0.3 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. Their run ventilatory threshold (TRVT) of $3.5 \pm 0.11 \cdot \mathrm{~min}^{-1}$, occurred at $74.2 \pm$ $3.4 \% \mathrm{TRVO}_{2 \text { max }}$. Details of their physiological responses to RBR_{1} and RBR_{2} are presented in Table 1. The athletes obtained significantly lower absolute cycle peak VO_{2} values than $\mathrm{TRVO}_{2 \text { max }}$ values (4.8 ± 0.2 vs. $4.2 \pm 0.41 \cdot \mathrm{~min}^{-}$ ${ }^{1}, \mathrm{p}<0.05$).

No significant differences in any of the measured physiological variables were observed between RBR_{1} and RBR_{2}. The 95% confidence limits for all such measures were similar across both trials. High levels of reliability ($\mathrm{CV}<10 \%$ and ICC <0.8) were also observed for most physiological variables, except [BLA] values (post R_{1}, $B_{\text {submax }}$ and R_{2}; Table 2). The changes in absolute oxygen uptake, HR and [BLA] between R_{1} and R_{2}, also displayed lower between-trial reliability than other measures (Table 2). Body mass (kg), before and immediately after the test - which lasted 00:50:00 $\pm 00: 02: 40 \mathrm{hh}: \mathrm{mm}$:ss on average was not significantly different.

The athletes' mean power cycle outputs and run speeds during the cycle-run TT were $286.4 \pm 43.3 \mathrm{~W}$ and $15.9 \pm 1.1 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, respectively. The equivalent cycle and run distances were $21.6 \pm 1.8 \mathrm{~km}$ and $5.3 \pm 0.4 \mathrm{~km}$. Blood lactate concentration after the $21.6 \pm 1.8 \mathrm{~km}$ cycle (B TT) was $9.5 \pm 1.7 \mathrm{mM}$, as compared to $10.1 \pm 3.0 \mathrm{mM}$ after the $5.3 \pm 0.4 \mathrm{~km}$ run (R TT). Multiple significant relationships were observed between the physiological measures

Table 1. Selected responses of the age-group triathletes to $R_{B R}$ and $R B R_{2}$ (mean $\pm s$ followed by the 95% confidence limits).

Variable	$\mathrm{RBR}_{1} \mathbf{(9 5 \%} \mathbf{~ C I)}$	$\left.\mathbf{R B R}_{\mathbf{2}} \mathbf{(9 5 \%} \mathbf{~ C I}\right)$	Mean diff (95\% CI)
$\mathrm{VO}_{2} \mathrm{R}_{1}\left(1 \cdot \mathrm{~min}^{-1}\right)$	3.67 ± 0.5 (3.25-4.09)	3.79 ± 0.34 (3.51-4.07)	0.12 ± 0.30 (0.36-0.25)
HR R ${ }_{1}$ (beats $\cdot \mathrm{min}^{-1}$)	$166 \pm 10(158-174)$	164 ± 13 (153-175)	$-1.63 \pm 5.71(-6.40-3.14)$
[BLA] post $\mathrm{R}_{1}(\mathbf{m M})$	$4.03 \pm 1.81^{\mathrm{a}}(2.52-5.54)$	3.89 ± 2.31 (1.96-5.82)	0.14 ± 1.47 (-1.32 to 1.61$)$
$\mathrm{B}_{\text {max }}$ Abs $\mathrm{VO}_{2 \text { peak }}\left(\mathrm{l} \cdot \mathrm{min}^{-1}\right)$	4.19 ± 0.40 (3.86-4.52)	4.19 ± 0.49 (3.78-4.60)	$0.01 \pm 0.16(-0.12-0.14)$
$B_{\text {max }} W_{\text {peak }}$ (W)	332.4 ± 33.6 (304.31-360.49)	332.9 ± 34.8 (303.81-361.99)	0.50 ± 11.25 (9.90-9.40)
$B_{\text {max }} \mathrm{HR}_{\text {peak }}$ (beats $\cdot \mathrm{min}^{-1}$)	182 ± 9 (174-189)	$181 \pm 9(174-189)$	-0.25 ± 2.49 (1.83-2.08)
[BLA] post $\mathrm{B}_{\text {max }}(\mathrm{mM})$	$12.9 \pm 3.1(10.31-15.49)$	$12.9 \pm 2.4(10.89-14.91)$	$-0.02 \pm 1.19(0.98-1.00)$
$B_{\text {submax }}$ HR (beats•min ${ }^{-1}$)	$160 \pm 12(150-170)$	160 ± 13 (149-171)	$0.13 \pm 3.76(-3.01-3.3)$
$\mathbf{V O}_{2} \mathrm{~B}_{\text {submax }}\left(1 \cdot \mathrm{~min}^{-1}\right)$	$3.21 \pm 0.030(3.18-3.24)$	3.21 ± 0.028 (3.19-3.23)	0.00 ± 0.13 (0.10-0.11)
[BLA] post $\mathrm{B}_{\text {submax }}(\mathrm{mM})$	7.47 ± 3.86 (4.24-10.70)	$7.16 \pm 3.46(4.27-10.05)$	0.31 ± 2.81 (-2.50 to 3.12)
$\mathrm{VO}_{2} \mathrm{R}_{2}\left(\mathbf{l} \cdot \mathrm{~min}^{-1}\right)$	3.68 ± 0.41 (3.34-4.02)	3.72 ± 0.38 (3.40-4.04)	0.04 ± 0.34 (4.21-3.77)
[BLA] post R_{2}	$6.83 \pm 3.39^{\text {a }}(4.00-9.66)$	6.76 ± 2.90 (4.34-9.18)	0.07 ± 5.63 (-5.56 to 5.70)
$\Delta \mathrm{HR}_{\text {R1-R } 2}\left(\right.$ beats $\left.\cdot \mathrm{min}^{-1}\right)$	$8.6 \pm 5.5(4.0-13.2)$	$10.0 \pm 6.7(4.4-15.6)$	$1.4 \pm 4.9(-2.7-5.5)$
$\Delta[B L A]_{\text {R1-R } 2}$	$2.80 \pm 3.42(-0.06-5.66)$	$2.86 \pm 1.31(1.76-3.96)$	$0.06 \pm 2.69(-2.19-2.31)$
$\Delta \mathrm{VO}_{2 \mathrm{R1-R} 2}\left(1 \cdot \mathrm{~min}^{-1}\right)$	0.0083 ± 0.19 (-0.15-0.17)	$-0.07 \pm 0.18(-0.22-0.08)$	$-0.79 \pm 0.16(-0.22-0.06)$

WO_{2} oxygen output, R_{1} first run section of RBR, HR heart rate, [BLA] blood lactate concentration, $\mathrm{B}_{\text {max }}$ maximal incremental bike test section of RBR, Abs $\mathrm{WO}_{2 \text { peak }}$ absolute peak oxygen output $\left(1 \cdot \mathrm{~min}^{-1}\right)$, $\mathrm{W}_{\text {peak }}$ peak power output, $\mathrm{B}_{\text {submax }}$ submaximal cycle section of RBR , R_{2} second run section of RBR, $\Delta H R_{R 1-R_{2}}$ change in HR between R_{1} and R_{2} of $\mathrm{RBR}_{1} \Delta[B L A]_{R_{1-R}}$ change in blood lactate concentration between R_{1} and R_{2} of $R B R_{1}, \Delta \mathrm{VO}_{2 \text { R1-R2 }}$ change in O_{2} between R_{1} and R_{2} of $R B R_{1}$. No difference between matched variables (in the same row) was found between RBR_{1} and RBR_{2} at the 95% confidence level.

Table 2. Selected reliability measures for $\mathrm{RBR}_{1} v s . \mathrm{RBR}_{2}$ (as obtained from the \log transformed variables, unless otherwise indicated).

Variable	ICC	CV (\%)	$\mathbf{L I M}_{\text {AG }}$	CR
$\mathbf{V O}_{2} \mathrm{R}_{1}\left(1 \cdot \mathrm{~min}^{-1}\right.$)	. 68	5.87	-12.92-20.01	16.46
HR R 1 (beats $\cdot \mathrm{min}^{-1}$)	. 92	2.6	-8.21-5.96	7.08
[BLA] post $\mathrm{R}_{1}(\mathbf{m M})$. 87	25.1	-72.82-49.68	61.25
$\mathrm{B}_{\text {max }}$ Abs $\mathrm{VO}_{2 \text { peak }}$. 98	1.80	-8.21-5.96	7.08
$B_{\text {max }} \mathrm{W}_{\text {peak }}(\mathrm{W})$. 95	2.72	-6.08-7.06	6.93
Cycle HR peak $^{\text {(beats } \cdot \mathrm{min}^{-1} \text {) }}$. 98	0.96	-2.74-2.44	2.59
[BLA] post $\mathrm{B}_{\text {max }}(\mathrm{mM})$. 99	3.00	-14.45-15.95	15.20
$B_{\text {submax }}$ HR (beats \cdot min $^{-1}$)	. 97	1.7	-4.53-4.57	4.55
$\mathrm{VO}_{2} \mathrm{~B}_{\text {submax }}\left(1 \cdot \mathrm{~min}^{-1}\right.$)	. 95	2.37	-7.70-7.65	7.68
[BLA] post $\mathrm{B}_{\text {submax }}(\mathrm{mM})$. 99	16.31	-45.36-36.27	40.82
$\mathrm{VO}_{2} \mathrm{R}_{2}\left(1 \cdot \mathrm{~min}^{-1}\right)$. 65	7.78	-18.21-20.46	19.34
[BLA] post R_{2}	. 68	36.0	-86.63-83.90	85.26

$\overline{\text { ICC intra-class correlation coefficient, CV Typical error expressed as a coefficient of variation, } \text { LIM }_{\mathrm{AG}} \text { limits of }}$ agreement (inferior-superior), CR coefficient of repeatability, VO_{2} oxygen output, R_{1} first run section of RBR, HR heart rate, [BLA] blood lactate concentration, $\mathrm{B}_{\text {max }}$ maximal incremental bike test section of RBR, Abs $\mathrm{VO}_{2 \text { peak }}$ absolute peak oxygen output $\left(1 \cdot \mathrm{~min}^{-1}\right), \mathrm{W}_{\text {peak }}$ peak power output, $\mathrm{B}_{\text {submax }}$ submaximal cycle section of $\mathrm{RBR}, \mathrm{R}_{2}$ second run section of RBR, $\Delta H R_{R 1-\mathrm{R} 2}$ change in HR between R_{1} and R_{2} of $\mathrm{RBR}_{1} \Delta$ [BLA $]_{\mathrm{R} 1-\mathrm{R} 2}$ change in blood lactate concentration between R_{1} and R_{2} of $\mathrm{RBR}_{1}, \Delta \mathrm{O}_{2 \text { R1-R2 }}$ change in O_{2} between R_{1} and R_{2} of RBR_{1}.
that were assessed within RBR_{1} and B-TT and R-TT distances (for which the athletes exercised at $86.2 \pm 6.6 \%$ cycle $\mathrm{W}_{\text {peak }}$ and $81.0 \pm 4.5 \%$ TR $\mathrm{V}_{\max }$, respectively) (Table 3).

Both RBR_{1} absolute cycle $\mathrm{W}_{\text {peak }}$ and absolute cycle $\mathrm{VO}_{\text {2peak }}$ were significantly correlated with B-TT distance ($\mathrm{r}=0.94, \mathrm{p}<0.001$ and $0.89, \mathrm{p}<0.02$, respectively), as was the [BLA] immediately post $\mathrm{B}_{\text {max }}(\mathrm{r}=0.77, \mathrm{p}<0.05)$. R -TT distance was related to the $\%$ of $\mathrm{TR} \mathrm{VO}_{2 \text { max }}$ that was elicited at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ in $\mathrm{R}_{1}(\mathrm{r}=-0.83, \mathrm{p}<0.05)$, to [BLA]
post $R_{1}(r=-0.92, p<0.05)$, to [BLA] at the end of $B_{\text {sub- }}$ $\max ^{(}(\mathrm{r}=-0.87, \mathrm{p}<0.05)$, and to the change in HR between consecutive runs of $\operatorname{RBR}_{1}\left(\Delta H R_{R 1-R 2}\right)(r=0.86, \mathrm{p}<0.05)$. Total TT distance was additionally related to absolute $\mathrm{BVO}_{2 \text { peak }}(\mathrm{r}=0.89, \mathrm{p}<0.02)$ and to the difference in blood lactate concentration between R_{1} and R_{2} of RBR_{1} $\left(\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}\right)(\mathrm{r}=-0.88, \mathrm{p}<0.05)$. The best correlates of TT performance in RBR_{1} generated the following prediction equation: $\mathrm{y}=18.26173+1.528404 \mathrm{X} 1+0.007845 \mathrm{X} 2$ 0.16085 X 3 where $\mathrm{X} 1=$ absolute $\mathrm{B} \mathrm{VO}_{2 \text { peak }}\left(1 \cdot \mathrm{~min}^{-1}\right)$;

Table 3. Selected Pearson's product moment correlation coefficients (r) between physiological variables obtained in the $\mathrm{TR}_{\mathrm{VO}_{2 \text { max }}}$ and RBR_{1} tests, and the athletes' laboratory time trial results.

Variable	Distance (km)		
	B TT	R TT	B-R TT
TR VO ${ }_{2 \text { max }}\left(1 \cdot \mathrm{~min}^{-1}\right)$.868*	. 557	.868*
TR VO $2_{\text {max }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$. 402	. 003	. 402
TR $\mathrm{V}_{\text {max }}$	-. 082	. 640	-. 104
$\%$ of TRVO ${ }_{2 \text { max }}$ at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$	-. 171	-. 832 *	. 143
$\mathrm{VO}_{2} \mathrm{R}_{1}\left(1 \cdot \mathrm{~min}^{-1}\right)$	-. 110	-. 830 *	. 39
$\mathrm{EC}_{\text {Run }} \mathbf{R}_{1}$ of RBR_{1}	-. 043	-. 762	. 474
[BLA] post R_{1}	. 213	-. 921 **	-. 016
$B_{\text {max }} \mathbf{W}_{\text {peak }}(\mathbf{W})$. 942 **	-. 377	. 885 *
$B_{\text {max }} W_{\text {peak }}\left(\mathbf{W} \cdot \mathrm{kg}^{-1}\right)$. 694	. 055	. 736
$B_{\text {max }} \mathrm{VO}_{2 \text { peak }}\left(1 \cdot \mathrm{~min}^{-1}\right)$. 885 **	-. 032	. 886 *
$\mathrm{B}_{\text {max }} \mathrm{VO}_{2 \text { peak }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$. 484	. 392	. 551
[BLA] post $\mathrm{B}_{\text {max }}(\mathrm{mM})$. 770 *	-. 740	. 550
\% of BVO ${ }_{2 \text { peak }}$ at $3 \mathrm{~W} \cdot \mathrm{~kg}^{-1}$	-. 272	-. 376	-. 503
$\mathrm{B}_{\text {submax }} \mathrm{B}$ EC	-. 380	-. 120	-. 140
[BLA] post $\mathrm{B}_{\text {submax }}(\mathrm{mM})$. 910	-.870 *	-. 210
$\mathrm{VO}_{2} \mathbf{R}_{2}\left(1 \cdot \mathrm{~min}^{-1}\right)$. 110	-.830 *	. 390
$\mathbf{E C}_{\text {Run }} \mathbf{R}_{2}$	-. 325	-. 590	. 015
$\Delta \mathrm{HR}_{\text {R1-R2 }}$ (beats $\cdot \mathrm{min}^{-1}$)	-. 330	. 860 *	. 060
$\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$	-. 580	. 200	-. 880 *
$\Delta \mathrm{VO}_{2 \mathrm{R} 1-\mathrm{R} 2}$. 170	-. 340	. 120
$\Delta \mathrm{EC}_{\text {R1-R2 }}$. 508	-. 358	. 589

B TT cycle section of the time-trial (TT), R TT run section of TT, B-R TT cycle-run TT, TR treadmill, WO_{2} max maximal oxygen uptake, $\mathrm{V}_{\text {max }}$ peak TR running speed during $\mathrm{TRVO}_{2 \max }$ test, $\mathrm{VO}_{2} \mathrm{R}_{1}$ oxygen uptake, R_{1} first submaximal run of $\mathrm{RBR}_{1}, \mathrm{EC}_{\text {Run }}$ running economy, [BLA] blood lactate concentration, $\mathrm{B}_{\max }$ maximal incremental section of $\mathrm{RBR}_{1}, \mathrm{~W}_{\text {peak }}$ peak power output, $\mathrm{V}_{2 \text { peak }}$ peak oxygen uptake, $\mathrm{B}-\mathrm{EC}$ cycle economy, $\mathrm{B}_{\text {submax }}$ submaximal cycle section of $\mathrm{RBR}_{1}, \mathrm{R}_{2}$ second run of $\mathrm{RBR}_{2}, \Delta H R_{\mathrm{R1} 1-\mathrm{R} 2}$ change in HR between R_{1} and R_{2} of $\mathrm{RBR}_{1} \Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$ change in blood lactate concentration between R_{1} and R_{2} of $\mathrm{RBR}_{1}, \Delta \mathrm{VO}_{2} \mathrm{R1-R2}$ change in VO_{2} between R_{1} and R_{2} of $\mathrm{RBR}_{1}, \Delta \mathrm{EC}_{\mathrm{R} 1-\mathrm{R} 2}$ change in economy between R_{1} and R_{2} of RBR_{1}, * significant at the p <0.05 level, ${ }^{* *}$ significant at the $\mathrm{p}<0.02$ level
$\mathrm{X} 2=\mathrm{W}_{\text {peak }}(\mathrm{w})$ and $\left.\mathrm{X} 3=\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}\right)$, with an r^{2} value of 0.98 . No significant relationships between $\mathrm{EC}_{\text {Run }}$ in R_{1} or R_{2}, or $\Delta \mathrm{EC}_{\mathrm{R1} 1-\mathrm{R} 2}$, and $\mathrm{B}-\mathrm{TT}, \mathrm{R}-\mathrm{TT}$ or $\mathrm{C}-\mathrm{R} \mathrm{TT} \mathrm{distance}$ were observed.

Discussion

Both the subject characteristics and their physiological responses (Tables 1 and 2), confirmed them as welltrained age-group but not elite triathletes. In common with the athletes of Millet et al. (2003), Millet and Bentley (2004), and Schabort et al. (2000), the subjects displayed significantly greater $\mathrm{VO}_{2 \text { max }}$ values for running than for cycling ($\mathrm{p}<0.05$). As the VO_{2} values of the athletes were reproducible this is unlikely to have been due to fatigue from R1 in $\mathrm{B}_{\text {max. }}$. However, the athletes in this study were older and possessed lower TR $\mathrm{VO}_{2 \max }$, B $\mathrm{VO}_{2 \text { peak }}$, and $\mathrm{W}_{\text {peak }}(\mathrm{W})$, than the Senior male Elites of previous work (Millet et al., 2003; Millet and Bentley, 2004; Schabort et al., 2000). The mean $\mathrm{W}_{\text {peak }}$ attained by the triathletes during $\mathrm{B}_{\max }$ was $332 \pm 9 \mathrm{~W}$, as compared to $385 \pm 50 \mathrm{~W}$ in Millet et al. (2003) and to $385 \pm 14 \mathrm{~W}$ in Schabort et al. (2000), respectively.

The triathletes exercised during R_{1} and R_{2} of RBR_{1} at $77.7 \pm 10.4 \%$ and $78.1 \pm 10.9 \%$ of TR $\mathrm{VO}_{2 \text { max }}$ respectively (i.e. at an almost identical intensity to that observed by Schabort et al. (2000) for elite triathletes performing an isolated run at the same speed). [BLA] was higher, however, post R_{1} than was observed by Schabort et al. (2000) for an isolated run (4.03 ± 1.81 and 3.89 ± 2.31 mM for RBR_{1} and RBR_{2}, respectively, vs. 1.72 ± 0.3 mM) (Table 2). Mean cycle intensity during $\mathrm{B}_{\text {submax }}$ was $66.8 \pm 5.1 \%$ of $\mathrm{W}_{\text {peak }}$, as compared to 80% during the $\mathrm{B}_{\text {submax }}$ section of the original RBR test (Millet et al., 2003; Millet and Bentley, 2004).

Importantly, as the measured physiological variables did not differ significantly between RBR1 and RBR2, they appear to exhibit good levels of test-retest error. Moreover, the RBR test appears to be valid relative to the distances covered within the cycle-run TT.

Almost all of the physiological measures in RBR displayed CV's of less than 10% and ICC's greater than 0.8 (Table 3). The error values that were obtained within RBR_{1} and RBR_{2} for absolute $\mathrm{W}_{\text {peak }}(\mathrm{W})$ and $\mathrm{BVO}_{2 \text { peak, }}$, specifically, were also similar to those of "effective practical use" (Balmer et al., 2000; Kuipers et al., 1985), and are therefore reliable (Atkinson and Nevill, 1998). The poorest inter-trial reliability was displayed by [BLA] post $\mathrm{R}_{1}(\mathrm{mM})(\mathrm{ICC} 0.87, \mathrm{CV} 25.1 \%)$, [BLA] post $\mathrm{B}_{\text {submax }}(\mathrm{mM})$ (ICC 0.99 , CV 16.31%, and [BLA] post R_{2} (ICC $0.51, \mathrm{CV}$ 22.95%). That is, the CV of all the [BLA] measures, apart from that taken immediately post $\mathrm{B}_{\text {submax }}$, was above the recommended standard for reliability of 15% (Gore, 2000). Our values for the change in HR and [BLA] between the two consecutive runs of the RBR (i.e. $\Delta \mathrm{HR}_{\mathrm{R} 1-\mathrm{R} 2}$ and $\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$) in that order, also appeared to be less reliable.

It was not possible to obtain meaningful ICC, CV, or $\mathrm{LIM}_{\mathrm{AG}}$ for the logged values of $\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$, owing to a lack of consistency in the direction of any such changes, but the mean differences and 95% confidence limits for
$\Delta \mathrm{HR}_{\mathrm{R} 1-\mathrm{R} 2}$ and $\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$ variables were 0.79 ± 0.16 (-$0.22-0.06$), and $0.06 \pm 2.70(-2.20-2.32)$ respectively. A potential five beat per minute difference in HR and a 2 mM difference in [BLA] from "reality" might cause concern to the coach who is using the RBR results to assess changes in cycle-run transition ability over time. We suggest, therefore, that any such judgement be based on the combination of both these values and the respiratory data, rather than on either HR or [BLA] (and especially not [BLA] (Sirotic and Coutts, 2008)) in isolation.

Laursen et al. (2007) have suggested that a reliable test may also be defined as one in which "the described measurement error is judged to be acceptable on the basis of its sensitivity for detecting real change" (or difference). Conducting a comparative assessment of the physiological responses to the RBR test of athlete groups such as OD vs. long distance specialists, who, because of differences in their training (Vleck et al., 2010), would be expected to differ in their ability to adapt to a cycle-run transition may therefore provide further insight into the test's appropriateness to a specific athlete population.

To the coach, "real change" normally means competitively significant change. A longitudinal prospective survey of the extent to which athletes' responses to the test can change over the course of the competitive season, analysed in conjunction with their race results, may yield further information regarding the usefulness of our protocol.

Although we did not use competition data to validate our test we obtained similar results regarding which physiological variables could be important, to those that have (Schabort et al., 2000; Millet et al., 2003; Millet and Bentley, 2004) (Table 2). For example, we observed a significant relationship between RBR_{1} absolute $\mathrm{BVO}_{2 \text { peak }}$ values and total TT distance. This is similar to the r value (of $-0.82, \mathrm{p}<0.05$) that was observed by Schabort et al. (2000) for the relationship between absolute $\mathrm{BVO}_{2 \text { peak }}$ (from an isolated cycle test) and total triathlon time. The correlation coefficient that we obtained between $\mathrm{W}_{\text {peak }}$ in RBR_{1} and total TT distance ($\mathrm{r}=0.87, \mathrm{p}<0.05$) approximated that obtained between $\mathrm{W}_{\text {peak }}$ and total OD time by Schabort et al. (2000) ($\mathrm{r}=-0.86, \mathrm{p}<0.05$) and was better than that obtained between $\mathrm{W}_{\text {peak }}$ for OD time within Millet's RBR test ($\mathrm{r}=-0.71, \mathrm{p}<0.001$) (Millet et al., 2003). As subject ability level and the method that was used to validate the test differed between these two RBR studies, it is impossible to speculate to what extent the strength of r may be influenced by protocol differences within their maximal incremental cycle section, and thus, which test may be better on which occasion.

We additionally observed a similar r value ($\mathrm{r}=-$ $0.83, \mathrm{p}<0.05$) for the relationship between $\%$ of $\mathrm{VO}_{2 \text { max }}$ at $15 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ (in R_{1}) and run TT distance, as was observed between the same variable and both $10-\mathrm{km}$ running time (also $\mathrm{r}=-0.83, \mathrm{p}<0.01$) and total triathlon time ($\mathrm{r}=-$ $0.81, \mathrm{p}<0.05$) by Schabort et al. (2000). Laurenson et al. (1993) had previously seen similarly high correlations, in female triathletes, between this same measure of efficiency and triathlon time. We however, found no such relationship between running economy (Miura et al., 1997) and performance, agreeing with Schabort et al.
(2000) but not with Millet et al. (2003). Again it is not clear to what extent the difference between this and the original RBR protocol in what was related to performance is due to protocol differences between the two tests. In the original test, athletes were asked to perform R_{1} and R_{2} at a speed corresponding to their current personal best OD triathlon run time.

Both [BLA] post $\mathrm{R}_{1}(\mathrm{r}=-0.92, \mathrm{p}<0.02)$ and [BLA] post $\mathrm{B}_{\text {submax }}(\mathrm{r}=-0.87, \mathrm{p}<0.05$) were also highly correlated with R-TT distance ($\mathrm{r}=-0.88, \mathrm{p}<0.05$). Moreover, the $\Delta[B L A]_{\mathrm{R} 1-\mathrm{R} 2}$ was strongly related to total TT distance ($\mathrm{r}=$ $0.88, \mathrm{p}<0.05$), as $\Delta \mathrm{HR}_{\mathrm{R} 1-\mathrm{R} 2}$ was to total $\mathrm{R}-\mathrm{TT}$ distance ($\mathrm{r}=0.86, \mathrm{p}<0.05$). We consider this significant relationship between both $\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}$ and $\Delta \mathrm{HR}_{\mathrm{R} 1-\mathrm{R} 2}$ and performance to be an important justification for using combined (as opposed to isolated) cycle and run testing in triathletes. We cannot report whether a similar relationship exists when these variables are measured within the Millet test (Millet et al., 2003), as [BLA] values have not been reported for it. However, as discussed above, care should be taken in the use of [BLA] and HR related values to assess the degree of training adaptation that may have taken place between successive tests (Morton et al., 2012).

As regards the appropriateness of our choice of the 30 -minute cycle - 20 -minute run TT to validate the physiological measures obtained within RBR, we note that Hue (2003) found end-cycle [BLA] and total running distance (Table 2) to be significantly correlated ($\mathrm{r}=0.83$, $\mathrm{p}<0.05$ and $-0.92, \mathrm{p}<0.01$, respectively) with total drafted OD time. Our athletes started the TT from a 15 $\mathrm{km} \cdot \mathrm{h}^{-1}$ rolling start, rather than at a "speed close to their performance level in a classic triathlon" (Hue, 2003), but otherwise the two TT protocols were identical. We doubt that this change would have affected the TT post-cycle [BLA] and run distance values. Although it would have been better if we had also validated our test results against competition data, and a prediction equation obtained from 8 subjects lacks adequate statistical power, our results agree with the literature (Millet et al., 2003, Millet and Bentley, 2004; Schabort et al., 2000) as regards which physiological variables (e.g. $\mathrm{BVO}_{2 \text { peak }}$ and $\mathrm{B} \mathrm{W}_{\text {peak }}$, postcycle $[\mathrm{BLA}]$, and $\left.\Delta[\mathrm{BLA}]_{\mathrm{R} 1-\mathrm{R} 2}\right)$ are related to TT or race performance.

Conclusion

Our new RBR test allows reproducible measurement of $\mathrm{B}_{\text {max }} \mathrm{W}_{\text {peak }}(\mathrm{W})$ and $\mathrm{B}_{\text {max }}$ Abs $\mathrm{VO}_{\text {2peak }}$, all of which have been consistently related to triathlon performance. The test appears to be reliable, and valid relative to laboratory time-trial performance, in male OD age-groupers. However, further investigation into the sensitivity of the variables that are assessed when the modified RBR is used to test an age-group population, relative to training modification and actual race performance, is warranted.

Acknowledgements

This paper is dedicated to Mr. Anthony Smith, who gained a University Prize for his undergraduate work on this study before he sadly passed away. The first author thanks the "Fundação para a Ciência e a Tecnologia" (FCT) (the Portuguese Foundation for Science and Technology) for their award of a post-doctoral research fellowship under the "Ciência 2008" programme. No other funding was received for this
work. We further gratefully acknowledge the support of all our study participants and their coaches. We are not aware of any conflicts of interest associated with or proceeding from this study

References

Atkinson, G. and Nevill, A.M. (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine 26(4), 217-238.
Atkinson, G., Nevill, A.M. and Edwards, B. (1999) What is an acceptable amount of measurement error? The application of meaningful 'analytical goals' to the reliability analysis of sports science measurements made on a ratio scale. Journal of Sports Sciences 17, 18.
Balmer, J., Davison, R.C. and Bird, R.C. (2000) Reliability of an airbraked ergometer to record peak power during a maximal cycling test. Medicine and Science in Sports and Exercise 32, 1790-1793.
Bentley, D.J. and McNaughton, L.R. (2003) Comparison of W(peak), VO_{2} (peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. Journal of Science and Medicine in Sport 6(4), 422-435.
Bentley, D.J., Delextrat, A., Vleck, V. and Reid, A. (2005) Reliability of a sequential running-cycling-running test in trained triathletes. In Proceedings of the 2005 Annual Conference of the British Association of Sports and Exercise Scientists. Journal of Sports Sciences 23(2), 93-223.
Bland, J.M. and Altman, D.G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 1, 307-310.
Bland, J. -M. and Altman, D.G. (1999) Measuring agreement in method comparison studies. Statistical Methods in Medical Research 8, 135-160.
Davis, J.A., Whipp, B.J. and Wassermann, K. (1980) The relation of ventilation to metabolic rate during moderate exercise in man. European Journal of Applied Physiology and Occupational Physiology 44, 97-108
Di Prampero, P.E. (1986) The energy cost of human locomotion on land and in water. International Journal of Sports Medicine 7, 55-72.
Gore, C.J. (2000) Quality assurance in exercise physiology laboratories. In: Physiological tests for elite athletes. $1^{\text {st }}$ edition. Champaign, IL: Human Kinetics. 3-11.
Hawley, J. and Noakes, T.D. (1992) Peak power uptake predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology 65(1), 79-83.
Hue, O. (2003) Prediction of drafted-triathlon race time from submaximal laboratory testing in elite triathletes. Canadian Journal of Applied Physiology 28(4), 547-560.
Hopkins, W.G. (2000) Measures of reliability in sports medicine and science. Sports Medicine 30(1), 1-15.
Hopkins, W.G. (2009) Reliability from consecutive pairs of trials [Excel spreadsheet]. A new view of statistics. sportsci.org: Internet Society for Sport Science [Updated 2009; Accessed 20/09/2011]. Available from URL: http://sportsci.org/resource/stats/xrely.xls
Hopkins, W.G., Marshall, S.W., Batterham, A.M. and Hanin, J. (2009) Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise 41(1), 312.

Jones, A.M., and Doust, J.H. (1996) A 1\% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences 14(4), 321-327.
Kuipers, H., Verstappen, F.T. , Keizer, H.A., Guerten, P. and Van Kranenburg, G. (1985) Variability of aerobic performance in the laboratory and its physiological correlates. International Journal of Sports Medicine 6, 197-201.
Laurenson, N.M., Fulcher, K.Y. and Korkia, P. (1993) Physiological characteristics of elite and club level triathletes during running. International Journal of Sports Medicine 14, 455-459.
Laursen, P.B., Francis, G.T., Abbiss, C.R., Newton, M.J. and Nosaka, K. (2007) Reliability of time-to-exhaustion versus time-trial running tests in runners. Medicine and Science in Sports and Exercise 39, 1374-1379.
Lucia, A., Hoyos, J. and Chicharro, J.L. (2001).Preferred pedalling cadence in professional cycling. Medicine and Science in Sports and Exercise 33(8), 1361-1366.
Midgley, A.W., McNaughton, L., Polman, R., and Marchant, D. (2007)

Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Medicine 37(12), 1019-1028.
Millet, G.P. and Vleck, V.E. (2000) Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. British Journal of Sports Medicine 34, 384-390.
Millet, G.P., Millet, G.Y., Hofmann, M.D. and Candau, R.B. (2000) Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level. International Journal of Sports Medicine 21, 127-132.
Millet, G.P., Millet, G.Y. and Candau, R.B. (2001) Duration and seriousness of running mechanics alterations after maximal cycling in triathletes. Influence of the performance level. Journal of Sports Medicine and Physical Fitness 41, 147-153.
Millet, G.P., Dreano, P. and Bentley, D.J. (2003) Physiological characteristics of elite short- and long distance triathletes. European Journal of Applied Physiology 88, 427-430.
Millet, G.P. and Bentley, D.J. (2004) The physiological responses to running after cycling in elite junior and senior triathletes. International Journal of Sports Medicine 25, 191-197.
Miura, H., Kitagawa, K. and Ishiko, T. (1997) Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon. International Journal of Sports Medicine 18(4), 276-280.
Moseley, L. and Jeukendrup, A.E. (2001) The reliability of cycling efficiency. Medicine and Science in Sports and Exercise 33(4), 621-627.
Morton, R.H., Stannard, S.R. and Kay, B. (2012) Low reproducibility of many lactate markers during incremental cycle exercise. British Journal of Sports Medicine 46, 64-69.
Noakes, T.D., Myburgh, K.H. and Schall, R. (1990) Peak treadmill running velocity during the VO_{2} max test predicts running performance. Journal of Sports Sciences 8(1), 35-45.
Pyne, D.B., Boston, T., Martin, D.T. and Logan, A. (2000) Evaluation of the Lactate Pro blood lactate analyser. European Journal of Applied Physiology 82(1-2), 112-116.
Schabort, E.J., Killian, S.C., St Clair Gibson, A., Hawley, J.A. and Noakes, T.D. (2000) Prediction of triathlon race time from laboratory testing in national triathletes. Medicine and Science in Sports and Exercise 32(4), 844-849.
Saunders, P.U., Pyne, D.B., Telford, R.D. and Hawley, J.A. (2004a) Reliability and variability of running economy in elite distance runners. Medicine and Science in Sports and Exercise 36(11), 1972-1976.
Saunders, P.U., Pyne, D.B., Telford, R.D. and Hawley, J.A. (2004b) Factors affecting running economy in trained distance runners. Sports Medicine 34(7), 465-485.
Sirotic, A.C. and Coutts, A.J. (2008) The reliability of physiological and performance measures during simulated team-sport running on a non-motorised treadmill. Journal of Science and Medicine in Sport 11(5), 500-509.
Suriano, R. and Bishop, D. (2010) Combined cycle and run performance is maximised when the cycle is completed at the highest sustainable intensity. European Journal of Applied Physiology 110(4), 753-760.
Vleck, V.E., Bentley, D.J., Millet, G.P. and Bürgi, A. (2008) Pacing during an elite Olympic distance triathlon competition: comparison between male and female competitors. Journal of Science and Medicine in Sport 11(4), 424-432.
Vleck, V.; Millet, G.; Bentley, D. and Cochrane, T (2010) Occurrence and risk factors for overuse injury in elite triathletes: effect of event distance. Journal of Strength and Conditioning Research 24(1), 30-36.
Vleck, V. and Alves, F. (2011) Triathlon transition tests: overview and recommendations for future research. Revista International de Ciencias del Deporte (International Journal of Sport Science) 7(24), 1-3. Available from URL: http://www.cafyd.com/ REVISTA/ojs/index.php/ricyde/article/view/428/249
Zhou, S., Robson, J., King, M.J. and Davie, A.J. (1997) Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. Journal of Sports Medicine and Physical Fitness 37(2), 122130.

Key points

- It is extremely important to ensure that the measurements made as part of research or athlete support work are adequately reliable and valid.
- The modified Millet triathlete "Run-Bike-Run" (RBR) test allows both for important physiological variables that are normally obtained from isolated tests (such as cycle $\mathrm{VO}_{2 \text { peak }}$ and peak power output) to be determined, and for measurement of the extent to which an athlete adapts to a cycle-run transition (T2).
- The data reported in this paper regarding the testretest reliability of the modified RBR, and its validity relative to cycle-run time-trial performance in male age-group triathletes, may help coaches determine the extent to which changes on test measures are likely due to training adaptation rather than to measurement error.

Veronica VLECK
Employment
Chair of the Medical and Research Commit-
tee of the European Triathlon Union and a full-time FCT Research Fellow at the Technical University of Lisbon, POR.
Degree
PhD

Research interests

Mechanisms of fatigue, the extent and risk factors for injury and illness, prediction of maladaptation in multi- as opposed to single discipline- training.
E-mail: vvleck@fmh.utl.pt

Gregoire MILLET
 Employment

Prof. of exercise physiology at the Univ. of Lausanne, the Olympic capital, and Director of the Institute of Sport Sciences (ISSUL).
Degree
PhD
Research interests
Innovative training methods in hypoxia for intermittent sports, optimization of intervaltraining, prevention of injuries, biomechani-cal-physiological coupling in various sport locomotion.
E-mail: gregoire.millet@unil.ch

Francisco ALVES

Employment

Full prof. of the Faculty of Human Kinetics, director of the Lab. of Exercise Physiology.
Degree

PhD

Research interests
Bioenergetic and biomechanical efficiency in endurance sports performance, with special interest in swimming and triathlon, linked to training modeling and periodization.
E-mail: falves@fmh.utl.pt

David BENTLEY
Employment
Academic staff member and exercise physiologist at the School of Medical Science, Adelaide University.
Degree
PhD
Research interests
Applied and clinical exercise and sport science.
E-mail: david.bentley@adelaide.edu.au

\boxtimes Veronica Vleck

CIPER. Faculty of Human Kinetics. Technical University of Lisbon. Estrada da Costa. Cruz Quebrada-Dafundo. 1499-002
Portugal

