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Abstract  
This paper focuses on the contribution of Australian Football 
League (AFL) players to their team’s on-field network by 
simulating player interactions within a chosen team list and 
estimating the net effect on final score margin. A Visual Basic 
computer program was written, firstly, to isolate the effective 
interactions between players from a particular team in all 2011 
season matches and, secondly, to generate a symmetric 
interaction matrix for each match. Negative binomial 
distributions were fitted to each player pairing in the Geelong 
Football Club for the 2011 season, enabling an interactive match 
simulation model given the 22 chosen players. Dynamic player 
ratings were calculated from the simulated network using 
eigenvector centrality, a method that recognises and rewards 
interactions with more prominent players in the team network. 
The centrality ratings were recorded after every network 
simulation and then applied in final score margin predictions so 
that each player’s match contribution—and, hence, an optimal 
team—could be estimated. The paper ultimately demonstrates 
that the presence of highly rated players, such as Geelong’s 
Jimmy Bartel, provides the most utility within a simulated team 
network. It is anticipated that these findings will facilitate 
optimal AFL team selection and player substitutions, which are 
key areas of interest to coaches. Network simulations are also 
attractive for use within betting markets, specifically to provide 
information on the likelihood of a chosen AFL team list 
“covering the line”.   
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Introduction 
 
Australian Rules football, or AFL, is an invasion game 
played between two teams, each with 18 on-field players 
(and four reserves); a regular season consists of 18 teams 
each playing 22 matches. The dynamics of the game are 
similar to world football (association football or soccer), 
except that AFL players are permitted to use their hands 
to punch (handball) the ball to the advantage of a team 
member. The ultimate objective is to score a goal—worth 
six points—by kicking a ball through two upright posts at 
either end of the ground. Like other invasion games, 
scoring is the result of a series of critical events, or 
performance indicators, executed between the individuals 
involved in the contest (Nevill et al., 2002). These events 
are mostly discrete in nature, whether they are the number 
of kicks by player i or the number of times player j marks 
(catches) a kick from player i. In modern sports media, 
player performance indicators are intensively collected 
and published online across an ever-increasing number of 

sports, both prior to and during a match. It is common for 
player i’s indicators from a match to be weighted and 
linearly combined, resulting in a numerical performance 
appraisal, or player rating. This methodology has become 
a standard for many fantasy sporting leagues—that is, to 
calculate players’ post-match ratings then proportionally 
adjust their (fantasy) market value according to their 
rating fluctuations, as determined by a moving average 
from past matches. A criticism of this methodology is that 
it is too player-centric, ignoring an important underlying 
concept that a team is supposed to be more than the sum 
of the individual players (Gould and Gatrell, 1979/1980). 
Duch et al. (2010) argue that the real measure of player 
performance is “hidden” in the team plays, and not 
derived from strictly individual events associated with 
player i. Moreover, in their research on football-passing 
patterns from EURO 2004, Lee et al. (2005) measured 
passing between players at a group level rather than at an 
individual level, demonstrating how a player’s passing 
patterns determined his location in the team network.  

Discussions about network analysis commonly 
refer to the use of relational data or the interactions that 
relate one agent (player) to another and, so, preclude the 
properties of the individual agents themselves (Scott, 
2000). The objective of this research was to move beyond 
such individual performance exploits, towards a 
measurement of each player’s contribution to a dynamic 
system of team play. This was conceived through the 
identification of link plays within AFL matches (Sargent 
and Bedford, 2011), or sequences of play involving two 
or more players from team a where the ball’s movement 
effectively increased scoring likelihood. Links were 
produced from data representing every “interaction” 
between the players; most games exceeded 2,500 cases. 
The interaction between pairs of players from team a 
within each link made it possible to generate an 
interaction matrix with which to observe player relations, 
or the number of times the ball passes from player i to 
player j on team a (Gould and Gatrell, 1979/80). For this 
research, symmetric interaction matrices were generated 
for each match played by the Geelong Football Club in 
2011 and negative binomial distributions (nbd) fitted to 
each player pair in the matrix so that their interaction 
frequency could be simulated. Pollard et al. (1977) 
concluded that the nbd is a closer fit to events resulting 
from groups of players, rather than from individual 
performances; for example, an improved fit is observed 
from batting partnerships in cricket, rather than from 
individual batsman scores. Reep and Benjamin (1968) 
successfully modelled effective passes in world football 
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with nbd, while Pollard (1973) demonstrated how the 
number of touchdowns scored by a team in an American 
Football match closely followed the nbd. The nbd was 
considered to be a suitable fit to the AFL interaction data, 
able to simulate higher order interactions between pairs of 
superior players and lower order interactions between less 
prominent players. 

After each match simulation, a rating for each 
player in the network was calculated using eigenvector 
centrality, a measure of the importance of a particular 
node (player) in a network (team)—that is, by 
determining the extent to which player i interacted with 
other central players. Centrality is a core concept in 
network analysis and has been applied in countless 
environments to determine patterns of flow, for example, 
infections, forwarded emails or money flowing through 
markets. Borgatti (2005) provides excellent definitions 
and applications of centrality in its various forms. The 
appeal of eigenvector centrality is its ability to measure 
the long-term influence of a node on the rest of the 
network, not just its immediate effect on adjacent nodes, 
as in degree centrality (Borgatti, 2005). Furthermore, a 
team strength index was calculated after each simulation 
from player centrality mean and variance, which was 
predictive of the team’s final score margin. Through 
multiple iterations of the line-up and Jimmy Bartel’s 
resulting net simulated effect on margin, the paper 
ultimately evaluates his contribution to a selected side. It 
is anticipated that the network simulation model should 
aid in determining the probability of a team “covering the 
line” in betting markets, once the team list has been 
released for the upcoming round of football.  
 
Methods 
 
Player interaction 
Interaction frequency between any pair of players, [i, j] 
from team a in a match is represented by the discrete 
random variable, rij. Three forms of interaction were 
recognised from our link play data: 

i) Primary interaction: efficient ball movement 
achieved through {Kicki; Markj}, {Handballi; Handball 
Receivedj} or {Hit Outi; Hit Out Receivedj}; 

ii) Secondary interaction: less efficient ball 
movement, namely player j gathering the ball off the 
ground (“Ball Get”) due to an inaccurate player i event; 
team a retains possession of the ball; 

iii) Negative interaction: inefficient ball movement 
where player i relinquishes possession of the ball to 
player k from team b (“Turnover”).  

The interaction methodology is similar to “r-pass 
movement” in world football as defined by Reep and 
Benjamin (1968), but is enriched by recognising the 
combinations of players involved in the movement. Given 
the directional nature of the data within the link plays, the 
initial interaction matrices were asymmetric, where each 
Aij was the frequency of player i “sending” the ball to and 
being “received” by player j (see points i) and ii) above). 
This research, however, required an undirected network—
that is, any and all relations between players regardless of 
the directional flow (Scott, 2000). A directed network 

would be preferred if we were interested in a player’s 
send/receive ratio. For example, because he is mostly 
attempting to score, a forward would receive the ball from 
teammates more than he would send the ball. The 
undirected network required each matrix to be 
symmetrised, using rij = rji = Aij + Aji, (i, j = 1,…,22). 
Frequency distributions could then be calculated for each 
[i, j] in each of Geelong’s 25 matches (22 regular season 
games and three finals matches). Geelong fielded 34 
players throughout the season, so a total of (34 x (34-1))/2 
= 561 distributions were computed. In this calculation, the 
subtraction of 1 removed player i’s interaction with 
himself, and the divisor of 2 halved the distributions to be 
calculated because rij = rji. Figure 1 displays the observed 
interaction, f(r), between Geelong’s Jimmy Bartel and 
Andrew Mackie for all 2011 season matches. This player 
pair was more likely to interact between one and six times 
in a match than not at all. The maximum number of 
interactions measured in the season between any pairing 
from the team was eight. 
 

 

 
 

Figure 1. Frequency distribution of [Bartel, Mackie] 
interactions. 
 
Interaction simulation 
If the average rate of discrete events that occur between 
two players within an AFL match remained constant over 
its course, the events could be described with a Poisson 
distribution. However, interaction rates between any [i, j] 
are stochastic, depending on factors such as the position 
of the two players, their skill levels and the defensive 
quality of the opposition. For this reason, the negative 
binomial distribution (nbd) was deemed more appropriate 
than Poisson. Although the performances of individual 
players do not give close fits to the nbd, the fit improves 
as more players become involved (Pollard et al, 1977). 
From the negative binomial distribution, the probability 
of r interactions for each [i, j] is: 
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where k > 0, 0 < p < 1 and q = 1 - p. 
 
The parameters, k (the threshold number of 

successes) and p (the probability of a success) were 
estimated so as to minimize the Pearson’s chi-squared 
statistic,  χ2  for  each  [i, j], by using the observed (O) and 
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expected (E) probabilities derived from Equation (1), or: 
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s.t. 0 < p < 1 and k > 0.  

where r is the number of failures (interactions). 

Fitting nbd to various sports, Pollard et al (1977) 
estimated k and p by a method of moments, so: 

k = m2/(s2 – m), p = m/s2     (3) 
where m is the sample mean and s2 is the sample variance. We 
concluded that Equation (2) was a more adequate fit to the 
interaction data, providing lower χ2 values for the majority of 
Geelong’s [i, j]. The [Bartel, Mackie] example is displayed in 
Table 1 where k and p in each P(r)1 were estimated using Equation 
(2) and in each P(r)2 using Equations (3). 
 
Table 1. Probabilities and χ2 values for [Bartel, Mackie] 

r f(r) P(r)1 P(r)2 
0 .3333 .3333 .2897 
1 .1905 .2222 .2675 
2 .1429 .1481 .1853 
3 .1429 .0988 .1141 
4 .0952 .0658 .0659 
5 .0476 .0439 .0365 
6 .0476 .0293 .0197 
7 .0000 .0195 .0104 
8 .0000 .0130 .0054 

χ2 .0819 .1178 
 

A Visual Basic module was written to fit the 
optimized nbd to all combinations of players in the 
Geelong club and to simulate the players’ interactions for 
any chosen team list in the 22 x 22 team matrix. The 
initial routine produced a random probability, u ~ U(0,1) 
for each [i, j] in the match, with rij determined by the 
cumulative distribution function: 

 
( )rRPrF ≤=)(     (4) 

where R represents the cumulative probability. For example, a 
randomly generated probability of u = 0.3 would produce r[Bartel, 
Mackie] = 0 as u < P(R≤1) = 0.0000 + 0.3333 (see Table 1). For 
each simulation, all (22 x (22 - 1))/2 = 231 elements of the 
interaction matrix assumed a value for r as determined by u and 
Equation (4), enabling calculation of player ratings from the 
simulated matrix. 
 

Player ratings    
Measuring a player’s net contribution to a match in any 
team sport is an ambiguous task, in particular for the 
AFL, because 36 players compete on the field at any 
single moment. The different positional duties performed 
by each player add to the complexity: defenders prevent 
goals; forwards kick/create goals; and midfielders obtain 
and retain possession of the ball to increase the chance of 
their team scoring. A network algorithm was introduced 
for rating purposes to better understand the causality of 
player i’s performance with respect to that of his 
teammates. Centrality is one of the most widely studied 
concepts in network analysis and allows implicit 
assumptions about the prominence of an individual in a 
network (Lusher et al., 2010). A specific type, eigenvector 

centrality, was trialled as a valid player-rating model, 
under the assumption that the higher a player’s centrality 
in the Geelong network, the greater his interaction with 
other players. The eigenvector centrality rating, e, for 
player i, was measured using: 

j
j

iji xre ∑=
λ
1

      (5) 

expressed in matrix form as: Ax = λx, where x is the corresponding 
eigenvector from our interaction matrix, A, and the eigenvalue, λ, 
was solved using an automated power method. Following n 
multiplications of A and x, the point at which λn-1 and λn converged 
prompted calculation (Equation (5)) of the ratings for all players 
within the actual or simulated interaction matrix. 
 

The simulated network and corresponding ratings 
detailed in this paper provided a pragmatic framework for 
estimating player i’s utility within a selected side. An 
important step in this procedure was calculating team a’s 
network “strength”, π, after each match, by: 
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where each e is derived from Equation (5). We compared 
Geelong’s 25 network indices from Equation (6) with each match’s 
final score margin and discovered a linear regression line 
effectively approximates the margin (R2 = 0.5302) (see Figure 
2top)). In practical terms, a team increases its likelihood of 
winning if more players force themselves to be central in the match 
network. This is analogous to the finding that soccer teams, skilful 
enough to retain possession for longer periods than their 
opposition, have a greater chance of scoring (Hughes and Franks, 
2005). 

 
To validate the centrality ratings, an “individual” 

rating equation, Yi, was developed, ignoring network 
methodology and focussing solely on player i’s post-
match performance indicator totals—the same four 
indicators (m) as in the primary interaction data (kick; 
mark; handball; handball received). The equation was of 
the form:   

∑
=

+=
4

1m
mmoi XbbY      (7) 

where Xm is the frequency of performance indicator m for player i, 
bm are weights and bo is the intercept. The weights were optimized 
to maximize the linear relationship between the mean ratings and 
final score margin in each Geelong match. Substituting Y for e in 
Equation (6) produced a comparable measure of team strength for 
the individual ratings. Figure 2bottom) confirms team strength was 
not as accomplished at predicting score margin when each player 
was assessed individually (R2=0.2837), rather than as an agent 
within a team’s network. This finding was analogous to the work 
of Pollard et al (1977) when fitting the negative binomial 
distribution to groups of players. 

 
Results 

 
Before investigating player effects within the network, we 
performed a preliminary examination on our simulator, 
testing the hypothesis of similar means between the 
observed and simulated total interactions from Geelong’s 
22 regular season matches. Opposition effect was ignored 
for  this  stage  of  the  research.  One  hundred interaction  
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Figure 2. Top: Relationship between Geelong’s mean network rating and final score margin. Bottom: 
Relationship between Geelong’s mean individual rating and final score margin. 

 
simulations  were  run  on  each round’s interaction totals, 
Σri, (i = 1,..,22), and the mean and standard deviation of 
each distribution compared with the total observed 
interactions in each match. Figure 3 reveals a satisfactory 
fit for the model, with no significant difference between 
the simulated and observed series means (p = 0.764, α = 
0.05). Moreover, the majority of observed totals fell 
within 95% confidence intervals associated with each 
simulated match mean. Match 13 was considered an 
anomaly in the series—Geelong fielded their weakest side 
for the season, as acknowledged by the simulator, but 
managed to achieve almost 600 interactions and to win by 
52 points, most likely due to their home-ground 
dominance. The outlier at Match 18 was Geelong winning 
by 186 points—the second-highest margin in AFL 
history—yet the simulator acknowledged the strength of 
this side, offering the largest simulated interaction mean 
of all matches (Σri = 654). The satisfactory totals fit gave 
us  confidence  to  proceed to analysis of individual player 

effects.  
A case study was undertaken on Geelong’s 2011 

grand final team list, beginning with one thousand 
network simulations. Using the regression line in Figure 
2top), final score margins were predicted and logged after 
each simulation. The black curve in Figure 4 represents 
the normal distribution ( 1X  = 47.03, σ1 = 14.31) of 
predicted margins given Geelong’s actual grand final 
team. Geelong won the game by 38 points, which reflects 
the model’s predictive properties. Another one thousand 
simulations were run on the same side, but we replaced 
Bartel with a player of lesser skill, Shannon Byrnes. The 
light grey curve in Figure 4 represents the normal 
distribution ( 2X = 31.96, σ2 = 13.15) of margins after 
Byrnes replaced Bartel in the side. Interpretation of this 
result is important; we concluded that, given his 
replacement (Byrnes), Bartel’s estimated net contribution 
to   the   selected   team  was  1X   -  2X   =  15.07   points.  
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                                   Figure 3. Simulated and observed interaction totals for Geelong matches. 
 

Stressing  the  selected  side  was  necessary as it could be 
hypothesised that Byrnes replacing Bartel in a stronger 
side may have less impact on margin due to the 
contribution of the other high-calibre players. To 
conceptualise the importance of selecting the best 
replacement player, we ran a third iteration in which we 
replaced Bartel with Darren Milburn—a highly regarded 
player, but not as skilful as Bartel—and again ran one 
thousand simulations. The normal distribution ( 3X = 
42.85, σ3 = 14.87) is represented by the dark grey curve in 
Figure 4, from which we concluded that, given his 
replacement (Milburn), Bartel’s estimated net 
contribution to the selected team was 1X  - 3X  =  4.18 
points. The difference between the mean of the Byrnes 
and Milburn distributions ( 2X  - 3X = -10.89) implied a 
coach would be more inclined to replace Bartel with 

Milburn in that side because the negative effect on margin 
is reduced. It is logical that a player may be selected on 
grounds other than his net effect on margin; for example, 
Byrnes’s style of play may be more suited than Milburn’s 
to the game-day conditions, but this is outside the 
concerns of this paper.  
 
Discussion 
 
If a prominent player is removed from the network, 
remaining rij distributions are not recalculated—that is, 
we assume teammates do not improve their performance 
to cover the absence of the excluded player. This 
phenomenon of players exceeding expectation will be 
explored further in ongoing research. Furthermore, this 
paper has not considered the presence of covariance 
between any rij. The initial stages of this research 

 
 

 
 
 

                                Figure 4. Margin distributions with and without Bartel. 
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governed that each rij is independent, even though degrees 
of interaction covariance between sets of [i, j] are almost 
certain. The thousands of [i, j] permutations and 
covariance between each would command a separate 
research paper. Ongoing research will also focus on 
improving the predictive power of the networks by 
weighting the three forms of player interactions in Section 
2i with respect to the levels of efficiency, scoring capacity 
and ground and opponent effects. 
 
Conclusion 
 
Player-based statistical analysis is as important in today’s 
sporting environments as ever before, with coaches 
continuously searching for the right mix of players to 
include in a team. In the AFL, the decision to include in a 
team one player over another can have serious 
repercussions on the outcome of the game. We developed 
a model to assist in such selection decisions by simulating 
different players’ interactions with one another and by 
measuring the effect of such networks on final score 
margin. Negative binomial distributions were fitted to all 
pairs of players within a side so that interactions between 
players could be simulated prior to a match. It was 
discovered that the strength of the Geelong team’s 
networks was predictive of its final score margin; 
therefore, it was possible to measure the contribution any 
player could make to the final margin. Hence, when a 
team’s line-up is revealed, so too is the likelihood of the 
team winning. From a pre-match betting perspective, it is 
possible to calculate the odds of the selected team 
“covering the line”. It is anticipated that an in-play model 
will add further value because coaches and punters can 
make informed decisions with knowledge of live match 
scenarios.  
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Key points 
 
• A simulated interaction matrix for Australian Rules 

football players is proposed 
• The simulations were carried out by fitting unique 

negative binomial distributions to each player 
pairing in a side 

• Eigenvector centrality was calculated for each 
player in a simulated matrix, then for the team 

• The team centrality measure adequately predicted 
the team’s winning margin 

• A player’s net effect on margin could hence be 
estimated by replacing him in the simulated side 
with another player 
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