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Abstract  
The aim of the present study was to examine the ability of a 
GPS-imbedded accelerometer to assess stride variables and 
vertical stiffness (K), which are directly related to neuromuscu-
lar fatigue during field-based high-intensity runs. The ability to 
detect stride imbalances was also examined. A team sport player 
performed a series of 30-s runs on an instrumented treadmill (6 
runs at 10, 17 and 24 km∙h-1) with or without his right ankle 
taped (aimed at creating a stride imbalance), while wearing on 
his back a commercially-available GPS unit with an embedded 
100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) 
time, and K were computed from both treadmill and accel-
erometers (Athletic Data Innovations) data. The agreement 
between treadmill (criterion measure) and accelerometer-derived 
data was examined. We also compared the ability of the differ-
ent systems to detect the stride imbalance. Biases were small 
(CT and K) and moderate (FT). The typical error of the estimate 
was trivial (CT), small (K) and moderate (FT), with nearly 
perfect (CT and K) and large (FT) correlations for treadmill vs. 
accelerometer. The tape induced very large increase in the right 
- left foot ∆ in CT, FT and K measured by the treadmill. The 
tape effect on CT and K ∆ measured with the accelerometers 
were also very large, but of lower magnitude than with the 
treadmill. The tape effect on accelerometer-derived ∆ FT was 
unclear. Present data highlight the potential of a GPS-embedded 
accelerometer to assess CT and K during ground running.  
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Introduction 
 
Monitoring acute neuromuscular fatigue is important for 
all run-based sports, and has various implications includ-
ing training load management to prevent injuries and/or 
rotation/substitution strategies during matches. The ability 
to assess running strides asymmetries, and in turn, possi-
ble lower-limb muscle strength imbalances can also pro-
vide important information with respect to injury risk, 
during both normal and rehabilitation training (Fousekis, 
Tsepis et al., 2011). Classical time-motion analyses in 
team-sports, which include distance covered into specific 
speed (Carling, 2013), acceleration and deceleration 
(Aughey, 2011) zones, and accelerometer-derived 
measures of overall ‘body load’ (Barrett et al., 2014), are 
unfortunately largely dependent on match pace and might 

therefore lack of sensitivity to detect neuromuscular fa-
tigue per se. It is actually well understood today that run-
ning activity during matches is more related to match 
tactics and score line than fatigue or fitness per se (Car-
ling, 2013). 

Recent results have nevertheless suggested that 
micro-sensors, such as the accelerometers included in the 
GPS units worn by the majority of team sport players 
(i.e., GPS-imbedded accelerometers) may provide, in 
comparison with classical locomotor-related data, more 
fatigue-sensitive measures. For example, in fatigued elite 
Australian Rules footballers showing at least an 8% de-
creased flight time: contraction time ratio from a coun-
termovement jump, there was a reduction in the contribu-
tion of the vertical axis to the total accelerometer load 
during matches (Cormack et al., 2013). Unfortunately, the 
actual meaning of the vertical axis loading remains par-
tially unclear, since it doesn’t represent a clear biome-
chanical/locomotor entity. Possibly more promising ac-
celerometer-derived measures may include contact time 
(CT) and vertical stiffness (K) (Gaudino et al., 2013), 
which are common stride variables, and have been shown 
to be largely affected by acute neuromuscular fatigue 
during repeated high-intensity runs (Morin et al., 2006, 
Girard et al., 2011). However, the validity of accelerome-
ter-derived CT, flying time (FT) and K have not been 
examined yet. Whether accelerometer-derived data can 
also accurately detect stride asymmetries is also, to our 
knowledge, still unclear.  

The aims of the present study were to examine the 
ability of GPS-imbedded accelerometers 1) to assess 
stride variables and vertical stiffness and 2) to detect 
stride asymmetries during running. 
 
Methods 
 
Participant and design 
Using a single-subject design protocol, a 36-y old team 
sport player (1.82 m, 80 kg) performed a series of 30-s 
runs at a 1% incline on a motorized instrumented tread-
mill (ADAL3D-WR, MD, HEF Tecmachine, Andrézieux-
Boutheon, France): 2 sets of 3 runs at 10 km∙h-1, 6 at 17 
km/h and 6 at 24 km∙h-1) with or without his right ankle 
taped (aimed at slightly shortening/stiffening the Achilles 
tendon and in turn, creating a stride imbalance, Figure 1). 

Research article 

 
Received: 08 April 2015 / Accepted: 26 July 2015 / Published (online): 24 November 2015 



Buchheit et al. 

 
 

 
 

699 

The player was highly familiar with treadmill running, 
and had no history of lower-limb injury. Tapping the right 
side was an arbitrary choice. Given the fact that the player 
had no history of previous injury, there is no reason to 
think that the side of the taping would have influenced the 
outcome of the present study. There was a 45-s rest be-
tween each trial to minimize fatigue, and a 3-min break 
between each set. The duration of each set was therefore 
~11-min long. At the end of each run, the player stopped 
running immediately and placed his feet on each side of 
the belt while holding the handlebars, before re-loading 
the treadmill at the end of each rest; the treadmill was 
never stopped so that the speed could be adjusted for the 
next run. The order of each run was randomized (e.g., 17, 
10, 24, 17, 24, 10, 10, 27 km∙h-1, etc.) within each set for 
each running condition, with the taped condition per-
formed during set 2 and 4. The testing sequence was 
therefore the following: 3 runs at each speed untaped, 3 
runs at each speed taped, 3 runs at each speed untaped and 
3 runs at each speed taped. To make sure that the tape 
effect was consistent and reproducible across set 2 and 4, 
the same length of tape was used and it was repositioned 
at the same place on the player’s leg. During the 4 series 
of runs, the player wore positioned between his scapulars 
and at the approximate level of T2, a commercially-
available GPS unit (SPI HPU, GPSports, Canberra, Aus-
tralia) with an embedded 100-Hz triaxial accelerometer. 
The GPS unit was held securely in a manufacturer rec-
ommended GPS-vest, as previously described (Aughey, 
2011). The GPS unit and imbedded accelerometer was 
vertically-oriented (Z axis) when the player was standing 
upright, the Y axis was orientated to forward-backward 
horizontal movement and the X axis was orientated to the 
left-right lateral deviations. Similar accelerometer data 
have shown good reliability when collected on football 
players during football-specific training exercise (Boyd et 
al., 2011).  
 

 
 

 
 

 
 

Figure 1. Achilles tendon taped to create the stride imbal-
ance. 
 

Methodology. CT and FT were computed as previ-
ously described from both treadmill (based the vertical 

ground reaction force signal) (Morin et al., 2005) and 
accelerometers (Gaudino et al., 2013) (Athletic Data In-
novations, using the magnitude vector, Figure 2) data by 
two independent scientists. Both scientists were blind to 
the data obtained with the other device; the data were then 
pooled by a third scientist who calculated vertical stiff-
ness for both devices using Morin et al.’s equation (Morin 
et al., 2005). Briefly, this equation is based on a sine-
wave modeling of the vertical ground reaction force dur-
ing the support phase, and uses CT, FT and subject’s 
body mass as computation inputs. Vertical reaction force 
data obtained with the treadmill were sampled at 1000 Hz 
during a 30-s period. For each run, after appropriate filter-
ing (Butterworth-type 30 Hz low-pass filter, based on 
pilot residual analyses), instantaneous values of vertical 
ground reaction force were analyzed for 10 consecutive 
steps. CT and FT were determined for each step using a 
30 N threshold (Figure 2, once strides were stabilized, i.e., 
generally after the initial 10-12 steps). The accelerometer-
derived data was processed using a fourth-order Butter-
worth filter (20-Hz cut-off, sampling frequency 100 Hz) 
aimed at reducing signal noise. Detection algorithms 
(Athletic Data Innovations) were used to recognize foot 
strikes based on the magnitude vector and the relationship 
between the Y and Z components of the accelerometer 
data. Due to the alignment of the unit on the subject’s 
upper back, the axial components of the accelerometer 
data are not truly vertical or frontal, but change with the 
varying orientation of the subject’s torso. The side of the 
foot strike (left vs. right) was assigned using a two-pass 
algorithm (Athletic Data Innovations) utilizing primarily 
the X component of the accelerometer. CT and FT were 
calculated using the filtered accelerometer-derived data 
by determining the time between the ‘foot strike start 
positon’ and the ‘foot strike end position’ (CT) using the 
previously mentioned detection algorithm. Consequently, 
the time between the ‘foot strike end position’ and the 
next ‘foot strike start position’ were used to determine FT. 
To increase the sample size and allow a correlation analy-
sis with sufficient statically power representative of the 
wide range of steps encountered during training and 
matches, the data from the 18 runs were then pooled to-
gether for analysis (3 speeds x 6 runs x 10 steps = 180 
steps). 
 
Statistical analysis 
The agreement between treadmill (criterion measure) and 
accelerometer-derived data was examined using a specifi-
cally-designed spreadsheet (Hopkins, 2000), which calcu-
lated the mean bias (90% confidence limits, CL) and the 
typical error of the estimate (TEE, 90% CL) both in per-
centage and standardized units, and Pearson correlation 
coefficients (r, 90% CL). We also compared the ability of 
the different systems to detect the stride imbalance using 
magnitude-based inferences (Hopkins et al., 2009). 
Threshold values for biases, TEE and standardized differ-
ences, were >0.2 (small), >0.6 (moderate), >1.2 (large) 
and very large (>2) (Hopkins et al., 2009). Finally, the 
following criteria were adopted to interpret the magnitude 
of the correlation: ≤0.1, trivial; >0.1-0.3, small; >0.3-0.5, 
moderate; >0.5-0.7, large; >0.7-0.9, very large; and >0.9-
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1.0, almost perfect. If the 90% CI overlapped small posi-
tive and negative values, the magnitude was deemed un-
clear;  otherwise  that  magnitude was deemed to be the  
observed magnitude (Hopkins et al., 2009). 
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Figure 2. Accelerometer-derived magnitude vector during 10 
successive steps, as measured for the three different running 
speeds (untaped condition). 
 
Results 
 
Biases were small (CT, -10.4%; 90CI: -12.3, -9.8; K -
13.3%; -14.6, -11.9) and moderate (FT, -25.8%; -18.8, -
27.7). The typical error of the estimate was trivial (CT: 
3.9%, 3.4, 4.6), small (K: 6.3%; 5.5, 7.5) and moderate 
(FT: 15.7%; 13.5,18.9), with nearly perfect (CT: r = 0.98; 
90%CI 0.97, 0.99; K: 0.98; 0.97, 0.99) and large (FT: 
0.68; 0.55, 0.78) correlations for treadmill vs. accelerome-
ter.  

The tape induced very large increase in the right - 
left foot ∆ in CT (4.5%; 4.2, 4.9), FT (7.0%; 2.3, 11.3) 
and K (10.3%; 8.6, 12.0) on the treadmill. The tape effect 
observed with the accelerometer on CT (3.7%, 2.3, 5.0) 
and K (6.4%, 3.8, 9.2) were also very large but of lower 
magnitude than with the treadmill (∆ in the ∆ CT: -0.9%, 
-2.4, 0.7 and K: -3.9%, -7.5, -0.3). The accelerometer-
derived tape effect on FT was unclear (0.3%, -3.7, 4.3). 
 
Discussion 
 

The first result of this preliminary study was that stride 
variables and vertical stiffness could be accurately esti-
mated using 100-Hz GPS-embedded triaxial accelerome-
ters. While the promise of such devices to detect stride 
variables have already been reported (Gaudino et al., 
2013), this is to our knowledge the first time that the data 
derived from a GPS-embedded tri-axial accelerometer 
were directly compared with a gold standard (i.e., vertical 
ground reaction force obtained from an instrumented 
treadmill) over several steps. Compared with the criterion 
measures obtained with the treadmill, the biases and typi-
cal errors were of small-to-moderate amplitude only, with 
nearly perfect to large correlations between the two tech-
nologies. Considering both the practical (outdoor use of a 
portable and individual device vs. lab-based and station-
ary device) and economical aspects of the accelerometer 
technology (instrumented treadmill or force plates sys-
tems cost up to 100 times more than accelerometers), and 
since CT and K are two important determinants of high-
intensity running performance (Girard et al., 2011; Morin 
et al., 2006), our preliminary results open new perspec-
tives for the field monitoring of neuromuscular fatigue. 
The smaller relative bias and greater CV reported for FT 
compared with CT may not reflect real differences in 
validity and reliability per se given the strong inter-
dependency of both measures (i.e., when the athlete’s foot 
is not in contact with the ground it could only be in the 
air). This is likely the result of the smaller absolute values 
of FT (0.10-0.15 s) compared with CT (0.15-0.25 s), 
which artificial increases the magnitude of the bias and 
TEE values when expressed in percentage.  

The second important finding of the present study 
was the ability of the GPS-embedded accelerometer to 
detect stride imbalances. While the tape-related imbalance 
could be detected via the analysis of all the treadmill 
variables (right-left differences in CT, FT and K were all 
very large), the imbalance was only apparent on CT and 
K measures with the GPS-embedded accelerometer, and 
of a smaller magnitude than with the treadmill. Despite a 
slightly lower sensitivity to the stride imbalance, the ac-
celerometer-derived data are likely relevant enough to 
detect running asymmetries in the field, which highlights 
the interest of such devices for the monitoring of potential 
lower-limb strength asymmetries in athletes.  

A limitation of the present preliminary study how-
ever is that all measures were collected on a single sub-
ject; whether similar results would be reported in various 
individuals with different anthropometrical attributes, 
stride patterns and running experiences still remains to be 
examined.  
 
Practical applications 
Today, almost all GPS systems, whatever the brand, in-
clude high-frequency tri-axial accelerometers in their 
individual units. Both manufacturer-provided (e.g., Team 
AMS for GPSports, Sprint for Catapult) and custom-made 
softwares (e.g., Athletic Data Innovations) allow auto-
mated and rapid stride analysis, which increases both the 
quantity and the quality of the data collected on each 
player. Since contact time and vertical stiffness are two 
important determinants of high-intensity running perfor-
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mance (Morin et al., 2006, Girard et al., 2011), and given 
the possible prognostic of lower-limb strength asymme-
tries (Fousekis et al., 2011), our results open new perspec-
tives for the field monitoring of neuromuscular fatigue. 
Another very important aspect of the present technology 
is that accelerometers can be used indoor (i.e., no GPS 
signal needed), which in fine allows their use for almost 
every type of run-based type of sports (e.g., basketball, 
handball). 
 
Conclusion 
 
Present data highlight the potential of GPS-embedded tri-
axial accelerometers to assess contact time and vertical 
stiffness during ground running. Since these two latter 
variables are important determinants of high-intensity 
running performance (Morin et al., 2006, Girard et al., 
2011), and since lower-limb strength imbalances may be 
related to a higher injury risk (Fousekis et al., 2011), our 
preliminary results open new perspective for the field 
monitoring of neuromuscular fatigue and performance in 
run-based sports. 
 
Acknowledgements 
The authors thank Franck Brocherie, Olivier Girard and Sean O’Connor 
for their help with data collection. 
 
References  
 
Aughey, R.J. (2011) Applications of GPS technologies to field sports. 

International Journal of Sports Physiology and Performance 6, 
295-310. 

Barrett, S., Midgley, A. and Lovell, R. (2014) PlayerLoad: reliability, 
convergent validity, and influence of unit position during 
treadmill running. International Journal of Sports Physiology 
and Performance  9, 945-952. 

Boyd, L.J., Ball, K. and Aughey, R.J. (2011) The reliability of Mini-
maxX accelerometers for measuring physical activity in Aus-
tralian football. International Journal of Sports Physiology and 
Performance 6, 311-321. 

Carling, C. (2013) Interpreting physical performance in professional 
soccer match-play: should we be more pragmatic in our ap-
proach? Sports Medicine 43, 655-663. 

Cormack, S.J., Mooney, M.G., Morgan, W. and McGuigan, M.R. (2013) 
Influence of neuromuscular fatigue on accelerometer load in 
elite Australian football players. International Journal of Sports 
Physiology and Performance 8, 373-378. 

Fousekis, K., Tsepis, E., Poulmedis, P., Athanasopoulos S. and Vagenas, 
G. (2011) Intrinsic risk factors of non-contact quadriceps and 
hamstring strains in soccer: a prospective study of 100 profes-
sional players. British Journal of Sports Medicince 45, 709-
714. 

Gaudino, P., Gaudino, C., Alberti, G.and Minetti, A.E. (2013) Biome-
chanics and predicted energetics of sprinting on sand: hints for 
soccer training. Journal of Science andMedicince in Sport 16, 
271-275. 

Girard, O., Micallef, J.P. and Millet, G.P. (2011) Changes in spring-
mass model characteristics during repeated running sprints. Eu-
ropean Journal of Applied Physiology 111, 125-134. 

Hopkins, W. (2000) Analysis of validity by linear regression (Excel 
spreadsheet). In: A new view of statistics. sportsci.org: Internet 
Society for Sport Science. Available form URL: 
http://sportsci.org/resource/stats/xvalid.xls. 

Hopkins, W.G., Marshall, S.W., Batterham, A.M. and Hanin, J. (2009) 
Progressive statistics for studies in sports medicine and exercise 
science. Medicince and Science in Sports and Exercise 41, 3-
13. 

Morin, J.B., Dalleau, G., Kyrolainen, H., Jeannin, T.and Belli, A. 
(2005). A simple method for measuring stiffness during run-
ning. Journal of Applied Biomechanice 21, 167-180. 

Morin, J.B., Jeannin, T., Chevallier, B. and Belli, A. (2006) Spring-mass 
model characteristics during sprint running: correlation with 
performance and fatigue-induced changes. International Jour-
nal of Sports Medicine 27, 158-165. 

 
 
Key points 
 
• GPS-embedded tri-axial accelerometers may be 

used to assess contact time and vertical stiffness 
during ground running. 

• These preliminary results open new perspective for 
the field monitoring of neuromuscular fatigue and 
performance in run-based sports  
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