Internal Validity in Resistance Training Research: A Systematic Review

Hubert Makaruk ¹, Marcin Starzak ², Maciej Płaszewski ³ and Jason B. Winchester ⁴

¹ Department of Physical Education and Sport, Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland; ² Department of Sports for All, Józef Piłsudski of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland; ³ Department of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland; ⁴ Division of Health Sciences & Human Performance, Concordia University Chicago, USA

Abstract

Ensuring internal validity is the key procedure when planning the study design. Numerous systematic reviews have demonstrated that considerations for internal validity do not receive adequate attention in the primary research in sport sciences. Therefore, the purpose of this study was to review methodological procedures in current literature where the effects of resistance training on strength, speed, and endurance performance in athletes were analyzed. A computer-based literature searches of SPORTDiscus, Scopus, Medline, and Web of Science was conducted. The internal validity of individual studies was assessed using the PEDro scale. Peer-reviewed studies were accepted only if they met all the following eligibility criteria: (a) healthy male and female athletes between the ages of 18-65 years; (b) training program based on resistance exercises; (c) training program lasted for at least 4 weeks or 12 training sessions, with at least two sessions per week; (d) the study reported maximum strength, speed, or endurance outcomes; and (e) systematic reviews, cohort studies, case-control studies, cross-sectional studies were excluded. Of the 6,516 articles identified, 133 studies were selected for rating by the PEDro scale. Sixty-eight percent of the included studies used random allocation to groups, but only one reported concealed allocation. Baseline data are presented in almost 69% of the studies. Thirty-eight percent of studies demonstrated adequate follow-up of participants. The plan to follow the intention-to-treat or stating that all participants received training intervention or control conditions as allocated were reported in only 1.5% of studies. The procedure of blinding of assessors was also satisfied in only 1.5% of the studies. The current study highlights the gaps in designing and reporting research in the field of strength and conditioning. Randomization, blinding of assessors, reporting of attrition, and intention-to-treat analysis should be more fully addressed to reduce threats to internal validity in primary research.

Key words: Evidence-based practice, research design, strength training, PEDro scale, athletes.

Introduction

Resistance training, commonly referred to as strength training or weight training, is considered an essential intervention for improving sports performance in most sports. There are many resistance training modalities, including free weights, machine weights, isokinetic devices, elastic bands, resisted running, and plyometrics. Resistance training has been repeatedly shown to be highly effective at increasing strength, speed, endurance, and sports performance in a variety of athletic populations (Seitz et al., 2014; Balsalobre-Fernández et al., 2016; Davies et al., 2017; Kwok et al., 2021). Therefore, it is not surprising that coaches are increasingly interested in resistance training methods whose effectiveness has been demonstrated by rigorous evaluation in high-quality studies. Evidence-based practice in sport sciences is a paradigm that promotes the integration of the practical experience of coaches and practitioners, athletes' values, and high-quality studies into the decision-making process for athlete care. Practitioners utilizing resistance training as a modality should apply the best scientific evidence to their training programs that are well-designed and well-reported (Amonette et al., 2016).

One approach to meeting these quality challenges is to take the appropriate steps in design, execution and reporting of research to increase the internal validity of investigations. Specifically, internal validity in experimental and quasi-experimental research designs indicates the degree to which changes in a dependent variable can be attributed to changes in an independent variable (Taylor and Asmundson, 2008).

Several basic methodological procedures are required to ensure high internal validity. Random assignment of participants to experimental and control groups (randomization) is a gold standard for experimental research, as it decreases the risk of selection bias by equally distributing the study participants with particular characteristics among all groups. Simple randomization, block randomization, and stratified randomization are the most common randomization techniques (Lin et al., 2015). It is interesting to note that estimates of intervention effects tend to be smaller in publications where random allocation is clearly reported, compared to works when non-random or quasirandom methods are used (Savović et al., 2012). A randomized experiment is an essential tool for testing the effectiveness of the intervention.

The second important feature for randomization procedures, therefore to internal validity is allocation concealment. Concealed allocation is adopted when the researcher is unaware of the sequence for group allocation. When an allocation is not concealed, the researcher (recruiter) may consciously or unconsciously influence allocation to a particular group, increasing the potential for selection bias which may taint the data. Schulz and Grimes (2002) determined that experimental research with inadequate or unclear allocation concealment tended to overestimate treatment effects, up to 40%, compared with those where concealment was used adequately. In addition, Schulz et al. (1995) reported that studies where allocation concealment was poor showed greater heterogeneity in results, due to more extensive fluctuation between above and below the estimates, relative to studies where allocation was both clear and adequate.

Examining similarity of the experimental and control groups at baseline is another important criterion for internal validity. This procedure allows the researcher to compare the groups on variables of interest following randomization to determine whether the groups are equivalent. Because it is still possible that some differences will occur, the knowledge about the magnitude of potential differences between groups at baseline is important for reliable interpretation of data from an investigation. Typically, demographic (e.g., age, sex) and anthropometric (e.g., height, body mass) variables, as well as key outcome measures for the study, are included in this analysis. Note that using the statistical control for baseline data across the randomized groups is often discouraged (Schulz et al., 2010). For example, according to the Consolidated Standards of Reporting Trials (CONSORT) guidelines for individually randomized trials, baseline statistical testing should not be applied, because based on the assumption of randomization, it is known that any baseline differences are caused by chance (Schulz et al., 2010). On the other hand, some researchers claim that baseline testing allows them to check that the randomization process has not been subverted (Berger, 2005).

Blinding is a procedure that reduces the risk of detection and performance bias by preventing subjects and researchers who are involved in the study from knowing to which group a participant was allocated. However, in strength and conditioning research, where differing exercises or training programs of often evaluated, both participants and supervisors (training instructors) are actively engaged in an intervention. In such cases, blinding is not completely possible. This limitation appears in these types of studies because participants and supervisors may consciously or unconsciously influence study results. For example, researchers may more efficiently motivate experimental group participants to confirm the hypothesis they set out to test. This is concerning for correct application of evidence-based practice in strength and conditioning, as there is evidence that lack of blinding leads to overestimated intervention effects (Jüni et al., 2001). While it is impossible to eliminate the risk of performance bias in studies of this type, reducing the risk of detection bias is possible by blinding the researchers who measure outcomes along with those who collect and analyze data.

Another methodological common challenge is attrition of participants during study. This threat to internal validity refers to the differential and systematic loss of participants from experimental and control groups. When attrition occurs, the characteristics of randomized groups may change from the initial allocation, and these changes may affect the study outcomes in an uncontrolled manner (Beutler and Martin, 1999; Dumville et al., 2006). One study that analyzed the effects of treatment in 235 randomized control trials (RCT) published in leading medical journals found that different assumptions about outcomes of participants who withdraw from the study could change interpretation of results of up to 58% of RCTs (Akl et al., 2012). Attrition may occur for numerous reasons, including diseases, participant loss of interest or poor tolerance for an intervention. In strength and conditioning research, there is also the potential for participants who are athletes to be injured in practice or competition outside of the intervention being used in the study. Even if the intervention is highly tolerable, some participants may not adhere to the allocated intervention due to the intervention is perceived as ineffective or they are dissatisfied with their allocated intervention. An athlete, for example, might fear loss of a competitive advantage if they are placed in a group which receives an intervention they believe may be less effective, causing them to withdraw from the study.

To mitigate attrition bias, different statistical techniques have been applied. Intention-to-treat (ITT) analysis is considered the gold standard method for dealing with attrition in RCT studies. According to the basic assumption of ITT, all randomized participants are included in the analysis in accordance with group assignment, regardless of their adherence, intervention duration or change of intervention regimen. As a result, data is analyzed irrespective of the planned study protocol. If the attrition rate is relatively high (e.g. >20 %), ITT analysis tends to underestimate the intervention effects in participants who complete the study (Armijo-Olivo et al., 2009).

Study quality assessment is often performed with the use of an assessment tool. No formal recommendation regarding such tool for strength and conditioning research exists, leading researchers to sometimes adapt tools from other, related, disciplines (Smart et al., 2015). One of the most common used assessment tool for rating the internal validity of primary articles included in systematic reviews is the Physiotherapy Evidence Database (PEDro) scale (Maher et al., 2003). The PEDro scale is based on the Delphi list developed by Verhagen et al. (1998) and, as its name suggests, was initially designed for physiotherapybased studies. Although some criteria of the PEDro scale are redundant for strength and conditioning studies, and others relevant for training intervention-effectiveness (e.g., adverse events, training frequency, volume and intensity of training) are not addressed, the PEDro scale does allow for the assessment of essential features of internal validity for strength and conditioning research.

The authors of this paper take a view that the PEDro scale items may also provide distinct advantages for primary research like RCT studies (outside the context of a systematic reviews) (Albanese et al., 2020). For example, by using them as guidelines during the planning stage of study design, researchers may minimize the influence of confounding variables, improve methodology, and receive more reliable information about experimental interventions. Numerous studies (Harries et al., 2015; Blagrove et al., 2018; Thiele et al., 2020; Trowell et al., 2020) suggest that internal validity of strength and conditioning research could be higher. However, because the results are not conclusive, we decided to review methodological quality of strength conditioning research which examined the effects of resistance training on strength, speed, and endurance in athletes. Our goal was not to provide a review of the total quality assessment of studies as previous systematic reviews have done, but rather focus on internal validity

criteria to provide more attention to methodological procedures which should be used during planning and reporting of experimental research in the field of strength and conditioning. In addition, we believe that a greater depth of understanding of research quality by practitioners may support the process of using the best evidence in practice.

Methods

Search strategy

The PRISMA guidelines for reporting a systematic review were adopted (Moher et al., 2009). As this study did not involve human subjects, institutional review board approval was not required. Four relevant electronic databases (SPORTDiscus, Scopus, Medline, and Web of Science) were comprehensively searched for studies examining the effects of resistance training on strength, speed, and endurance in athletes. The identified terms with Boolean operators with different expressions are presented in Table 1. All publications listed prior to April 15, 2021 were considered for inclusion without language restrictions.

Study selection and data extraction

Two independent investigators (HM, MS) screened titles, abstracts, and full-text articles against the PICO criteria (Table 2). Following extraction, duplicate articles were removed automatically using EndNote X9.3.3 (Clarivate Analytics). Any remaining duplicates were deleted manually. In any disagreement regarding inclusion/exclusion, ambiguous issues were discussed, and a consensus was reached before proceeding.

Internal validity analysis

The internal validity of each study included in this review was assessed using the PEDro quality scale. This appraisal tool was chosen because it demonstrates high reliability and validity for randomized control trials (Maher et al., 2003). In addition, the PEDro scale makes it possible to assess the clarity of statistical methods and report external validity criteria. A given PEDro item was scored as a "yes" if the criterion was met and the item scored as a "no" if the criterion was not met. Points were awarded only when a given criterion was satisfied according to the PEDro guidelines (please see https://pedro.org.au/english/resources/pedro-scale/; Maher et al., 2003). Note that the PEDro scale was adapted to the methodological and reporting requirements of strength and conditioning filed in this study. Criterion 1 "eligibility criteria were specified" was satisfied if the study reported the source of subjects and a list of criteria used to determine who was eligible to participate in the study. Criterion 2 "subjects were randomly allocated to groups" was satisfied if study stated that allocation was random. The precise method of randomization was not needed to specified in order to satisfy this criterion. However, quasi-randomization research did not satisfy this criterion. A point was awarded for criterion 3 "allocation was concealed" when authors of a study stated that group allocation was concealed or, when it was stated that the researcher who determined if a subject was eligible for inclusion in the study was unaware, when this decision was made, to which group the subject would be allocated. Criterion 4 "the groups were similar at baseline regarding the most important prognostic indicators" was considered

Table 1. Search strategy

- athlete* OR player* OR elite OR "highly trained" OR "highly skilled" OR "well-trained"
 "strength training" OR "weight training" OR "resistance training" OR "power training" OR "eccentric training" OR "strength exercise*" OR "weight exercise*" OR "resistance exercise*" OR "power exercise*" OR "eccentric exercise*" OR "isokinetic exercise*" OR "heavy load*" OR hypertrophy OR bodybuilding OR plyometric* OR "Olympic lift*" OR "muscular endurance" OR crossfit OR calisthenics OR "free weight*" OR "machine exercise*" OR "machine weight*" OR "elastic bands" OR "weight vest" OR "weights belts" OR "medicine ball*" OR kettlebell* OR "resisted speed" OR "resisted sprint*" OR "resisted
- run*" OR "sled towing" OR "resisted sled" OR "uphill run*" OR "muscle strength"
 "1 RM" OR "1RM" OR "rep* max*" OR "max* strength" OR "max* strength" OR squat OR "clean and jerk" OR "power clean" OR snatch OR deadlift OR "bench press" OR "leg press" OR "strength performance" OR "strength outcome*" OR sprint
 3. OR "speed run*" OR "run* time" OR "run* speed" OR "run* performance" OR "endurance run*" OR "run* endurance" OR "distance run*" OR "long distance run*" OR "run* economy" OR "run* distance" OR run* outcome* OR "sprint time" OR "1
- repetition maximum" 4. #1 AND #2 AND #3

Category	Inclusion criteria	Exclusion criteria
Population	Healthy male and female athletes (defined as participants who en- gaged in organized sports training and competition) with a mean age ≥ 18 years	Older adults (65 and over), disabled athletes, injured athletes
Intervention	Training program needed to last for a minimum of 4 weeks (or 12 training sessions) with at least 2 sessions per week Resistance training interventions including free weights, machine weights, isokinetic devices, elastic bands, resisted running and plyometrics	Combined interventions containing no re- sistance exercises (e.g. sprint or endurance running, balance exercises) or nutritional, pharmacological, physiological and psy- chological aids
Comparator	No restriction	
Outcome	Studies that tested maximum strength performance (in kg or Ib) or maximum running speed performance distance or maximum run- ning endurance performance (in units of time) as a dependent vari- able	Athletic performance was tested by isoki- netic condition, VO ₂ max, power measure- ments (e.g. in Watts), and jumping tests
Study design	Randomised and non-randomised controlled trials	Systematic reviews, cohort studies, case- control studies, cross sectional studies

Table 2. Selection criteria for muscular strength studies, running speed studies and running endurance studies

to have been met if a study reported at least one key outcome (primary measure of the effectiveness of the training intervention) and anthropometric variables such as body mass, body height or one repetition maximum test at baseline. Measure of the severity of the condition being treated was not applicable in this study. Criterion 4 was met if baseline data were presented by group allocation, and when there was no difference between prognostic indicators. Criterion 5 "there was blinding of all subjects" and criterion 6 "blinding of all therapists who administered the therapy" were not applicable in this study. A noted earlier, in strength and conditioning research, both participants and those applying a particular intervention are aware of which intervention is being applied. Criterion 7 "there was blinding of all assessors who measured at least one key outcome" was met when it is stated that the assessor of the primary outcome was blinded to group allocation. Criterion 8 "measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups" was satisfied only if the study explicitly reported both the number of subjects initially allocated to groups as well as the number of subjects from whom key outcome measures were obtained. In studies in which outcomes are measured at several points in time, a key outcome must have been measured in more than 85% of subjects at one of those points in time. Criterion 9 "all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analyzed by intention-to-treat" was met if intention-to-treat analysis was performed or, if the study explicitly demonstrated that all subjects received the training intervention or control condition as allocated. Criterion 10 "the results of betweengroup statistical comparisons are reported for at least one key outcome" was satisfied when comparison of two or more training interventions, or comparison of training intervention with a control condition was applied and when a factorial analysis of variance or hypothesis testing, describing the probability that the groups differed only by chance or in the form of an estimate (e.g., the mean or median difference) and its confidence interval have been used to analyze the data. Criterion 11 "the study provides both point measures and measures of variability for at least one key outcome" was met when a point measure was a measure of the size of the treatment effect (e.g., described or presented as a difference in group outcomes), or as the outcome in (each of) all groups and measures of variability included standard deviations, standard errors, confidence intervals, interquartile ranges (or other quantile ranges). Two qualified PEDro raters independently evaluated all included studies (HM, MS). All differences of opinion regarding the PEDro rating were discussed with a third independent qualified PEDro rater (MP).

Results

Study selection

Figure 1 shows the flow chart of the study selection process. The systematic literature search identified 6,516 records, of which 2,270 duplicates were removed. Screening for title and abstract identified 211 possibly relevant studies. After the full-text screening, 133 studies were selected for rating by the PEDro scale.

Characteristics of the included studies and participants

The characteristics of the included studies are summarized in Table S1 (see Supplemental File Table S1, the references of the included studies are also listed in this Supplemental File). The total sample size was 3,117 subjects (n = 2,532men, 81%; n = 585 women, 19%). The subjects were athletes between the ages of 18-65 years who engaged in organized sports training and competition. Across all studies, 74% of participants represented team sports (e.g., American football, basketball, handball, rugby, soccer), and 26% of participants represented individual sports (e.g., cross country skiing, cycling, track and field, tennis). Overall, 54 studies reported sports experience (range: 0 to 14 years) with the remaining 79 not explicitly describing subjects' level of experience.

Characteristics of the interventions

Training program durations varied from 4 to 40 weeks. The training interventions consisted of different types of resistance training, including traditional heavy resistance training (e.g., weight training, free weight training, squat training, eccentric exercises), resistance power training (e.g., Olympic lifting, explosive strength training, high-velocity resistance training), plyometrics (e.g., horizontal, vertical jumps, aquatic plyometrics), assistance exercise (e.g., core exercise, elastic bands), machine weights (e.g., machine squat jump training, exercise with isokinetic device) and resisted running (e.g., sled towing).

Characteristics of the tests used to measure outcomes

Most studies evaluated running speed with short linear sprints ranging from 5 to 50 m, including repeated sprint ability tests. Strength evaluation was mainly based on the one-repetition maximum (1RM) test of a back squat (full or half squat variations), bench press, and/or deadlift exercises. The included studies also assessed strength performance with 1RM tests for the pull-over, leg-press, power clean, snatch, clean and jerk, hip thrust, seated lat pulldown, chop-test, cable pulley, step-up, military press, lunge, shoulder flexion, and shoulder abduction. Six studies evaluated resistance training interventions on the improvement in endurance performance with running-based time trials. These outcomes were evaluated at distances ranging from 800 to 5000 m.

Internal validity PEDro items

The evaluation of internal validity items across the 133 studies is illustrated in Table 3 (for complete data, see Supplemental File Table S2). Although 68% (n = 90) of the included studies used random allocation to groups (*Criterion 2*), only 0.8% (n = 1) reported concealed allocation (*Criterion 3*). Baseline data (*Criterion 4*) are presented in 69% (n = 92) of the studies included in this review. Thirty-eight percent (n = 51) of studies showed adequacy of follow-up of tested athletes (*Criterion 8*). The plan to follow intention-to-treat (*Criterion 9*) or, stating that all participants received training intervention or control conditions as allocated, were reported in 1.5% (n = 2) of the studies

we reviewed. Blinding of assessors (*Criterion 7*) was satisfied in 1.5% (n = 2) of the studies. None of the studies met the blinding of subjects and training supervisors' criteria.

Table 3. Summary of rating for the included studies (n = 133)

		Rates o	of meeting
PED	ro scale item	cri	iteria
		n	%
1.	Eligibility criteria specified*	28	21.1
2.	Random allocation to groups	89	67.6
3.	Concealed allocation	1	0.8
4.	Groups similar at baseline	92	69.2
5.	Blinding of subjects (athletes)	0	0.0
6.	Blinding of therapists (training su-	0	0.0
	pervisors)	Ū	0.0
7.	Blinding of assessors	2	1.5
8.	Adequacy of follow-up	51	38.3
9.	Intention-to-treat analysis	2	1.5
10.	Between group comparison	113	85.0
11.	Point measures and measures of var-	128	96.2

*criterion not included in the final score

Non-internal validity PEDro items

The eligibility criteria (*Criterion 1*) were specified in 22% (n = 28) of studies. Reporting of results of between-group statistical comparisons (*Criterion 10*) and point measures and measures of variability (*Criterion 11*) were included in 85% (n = 113) and 96% (n = 128) of studies, respectively.

Discussion

This systematic review aimed to provide a comprehensive overview of the procedures that were used to ensure internal validity in resistance training research in athletes. This review revealed strengths and limitations of study designs and reporting procedures in strength and conditioning research. The main findings of the current study suggest that internal validity, as assessed by particular PEDro scale items, varied from moderate to very low. Accordingly, there are methodological safeguards which should be widely adopted in experimental studies in strength and conditioning to improve internal validity.

Figure 1. The flow chart of the study selection process.

Randomization is fundamental to the design and conduct of experimental research, the current analysis of resistance training research showed there is still room for improvement. Thirty-two percent of analyzed studies used less rigorous, often quasi-experimental design, in which there is only one group or in which randomization to more than one group is lacking (Balsalobre-Fernandez et al., 2013; Grazioli et al., 2020; Bachero-Mena et al., 2021). Quasi-experimental design does not control for unwanted systematic differences (selection bias) between groups, therefore it is a potential a threat to internal validity. This limitation occurs quite often in strength and conditioning research due to athletes' or coaches' training preferences. For example, coaches may be concerned about a reduction in preparedness for their athletes who are assigned to an intervention that they perceive to have less efficacy. There is also an ethical problem, if participant in the control group miss out taking part in experimental intervention which usually are considered as more beneficial than the intervention (or the lack of intervention) assigned to control group. To deal with these constraints, alternatively, researchers may consider the use of crossover or within-subject designs, where each participants of the study receive a series of interventions in random order and the outcomes are uniquely associated with each intervention.

Sixty-eight percent of the included studies were considered to have a random allocation, but only a few of them provide information about the techniques of randomization utilized (Anderson et al., 2008; Impellizzeri et al., 2008; Ali et al., 2019). From a methodological assessment of randomization procedure perspective, providing information about which technique was utilized in the study is important. For example, it is known that simple randomization is suitable for large samples of participants (n >100), but not appropriate when the size of sample is small, which is very common for strength and conditioning research – on average, 23 participants took part in each study in the present review. In such cases, utilizing of stratified randomization is recommended. This method allows for control and balancing the influence of covariates. The prerequisite for stratified randomization is that researchers should be able to identify each of the covariates which potentially influence key outcomes prior to group allocation. Common covariates for evaluation of effectiveness of resistance training interventions are age, sex, body mass, and training status. Considering above arguments, we believe that providing details whether, and how randomization was performed is important for internal validity of studies in strength and conditioning.

Despite data which suggests that lack of allocation concealment may improperly lead to a larger effect for a particular intervention (Odgaard-Jensen et al., 2011), only one of the included studies reported concealed allocation (Grazioli et al., 2020). This is consistent with data presented on the Physiotherapy Evidence Database (PEDro) (https://pedro.org.au/wp-content/uploads/ 11Jan2021.pdf). However, given the ease of implementation and reporting of concealed allocation, which does not seem to present the challenges in strength and conditioning research which have been noted in other criterion, the lack of intention to this is concerning.

Concealed allocation is a safeguard against researchers consciously or subconsciously introducing systematic differences in groups (Elkins, 2013). For example, when the effectiveness of a particular training method is being tested, athletes who are anticipated to have low adherence, or perhaps those athletes who are considered to be of a lower level by coaches or investigators, may be delayed until the probability of allocation to a control group is greater. Therefore, performing and reporting of concealed allocation in strength and conditioning research are required.

Randomized allocation to intervention and control groups does not guarantee that the groups are similar at baseline. Therefore, it is recommended to compare a few variables before the intervention to investigate the whether the groups are comparable. According to the PEDro scale, an article should provide data for each group for at least two variables, one measure of severity, and at least one (different) key outcome, which provides a measure of effectiveness or lack of effectiveness of the intervention. This criterion is only satisfied if baseline values are presented. Since strength and conditioning research typically includes healthy participants, the authors of this review replaced the "measure of severity of condition treated" with measures more related to the specifics of strength and conditioning studies, namely body mass and height. There is large of body research that indicate that body characteristics may influence resistance training outcomes (Twist et al, 2021). Almost 70% of the included studies reported these data, mainly in a table or figure. However, reporting of information on other baseline variables which may potentially influence the outcomes of resistance training intervention, such as results of one repetition maximum (1RM) testing, was much less common (Grgic et. al, 2020). This is concerning, as the training status of athletes would seem to clearly influence the potential for adaptation to a given intervention.

Interestingly, although using statistical significance tests for baseline data is not recommended (Schulz et al. 2010), statistical testing for judging the baseline comparability was common in the included studies. According to recommendations published in a top medical journal, The Lancet, it is sufficient for baseline characteristics to be reported and compared using descriptive statistics with a mean and a measure of variability (Schulz and Grimes, 2002). In addition, Schulz and Grimes (2002) proposed that continuous variables (e.g., age, body mass) may be reported as a mean and standard deviation. However, when data distribute asymmetrically, a median and percentile range (interquartile range) are more appropriate (Schulz and Grimes, 2002).

Blinding of participants and training instructors who involved in resistance training research is not realistic. However, those who are assessing and interpreting outcomes, including: data collectors, judicial assessors of outcomes and data analysts should be blinded to increase internal validity. Only 1.5% (n=2) of the studies included reported this procedure. These results are consistent with those of other reviews of resistance training interventions, which suggest that this criterion of internal validity is often not met (Thiele et al., 2020; Trowell et al., 2020). When

assessors are blinded, they may be less likely to have conscious or unconscious biases affect outcome assessments due to their expectations or beliefs about the effectiveness of the intervention. There are several strategies aimed at blinding assessors in strength and conditioning training (e.g. preventing assessors from accessing data which has the potential to compromise blinding).

Withdrawal and dropout of participants provide various challenges to investigators due to changing the baseline characteristics between the randomized groups. High rate of attrition and uncontrolled attrition have high potential to harm internal validity of outcomes. According to the criterion of the PEDro scale, a high risk of attrition appears when the publication does not explicitly state both the number of subjects who were initially allocated to a group and when key outcomes have not been measured in more than 85% of subjects. It should be noted that authors of the included studies in strength and conditioning often did not explicitly report the number of participants who completed the study. Adequacy of follow-up was fulfilled only by 40% of the studies. As this is an issue of reporting rather than design, this is simple to improve in future investigations. Attrition from research training programs in athletes may be due to several potential reasons, such as injury, concern for injury, loss of motivation to participate in research, or scheduling conflicts with their training program. To prevent high attrition rate and increase compliance with the protocol for the assigned groups, the research should be attractive and beneficial for participants and coaches of these athletes. It is good practice to include coach into research team.

The other method of reducing attrition bias is to implement an intention-to-treat analysis (Moseley et al., 2011). Employing the intention-to-treat procedures is not difficult. Firstly, the subjects whose participation in training intervention has been interrupted should be encouraged to participate in the remaining outcome measurements, if possible. Secondly, statistical analysis should reflect the allocation design and consider all obtained data (Elkins and Moseley 2015). Note that several methods have been identified to fill in the missing data (Nakai et al., 2014; Smart et al., 2015). In our review, intention-to-treat was undertaken only in 1.5% (n=2) of all included studies (Nonnato et al., 2020; Richards and Dawson, 2009).

The PEDro scale items also assess if statistical information reported in a study are interpretable. To fulfil this criterion, a study needs to report between-group comparisons. The second criterion is satisfied when a study reports both a measure of the size of the intervention effect and a measure of variability for at least one key outcome. As noted earlier, our findings showed that most of the reviewed studies demonstrated sufficient information to make them interpretable, 85% for criterion 10 and 96% for criterion 11.

The third, outside internal validity, criterion relates to external validity. This criterion is considered to have been met if a publication describes the source of the subject pool and when a list of inclusion or exclusion criteria of participants in the study is reported. Although reporting the source of participants of the study and specified eligibility criteria is an important attribute of generalizability of the study findings and is easy to apply in resistance training research, only one in five articles in the current review included this information. These results are consistent with those of other systematic reviews which investigated the effects of resistance training on the performance of athletes (Thiele et al., 2020; Trowell et al., 2020). For example, Trowell et al. (2020) found that 75% of included studies did not list eligibility criteria for participants. To address this, and the threats mentioned above to internal validity, researchers may wish to consider the use of CONSORT (Consolidated Standards of Reporting Trials) guidelines (Schulz et al., 2010).

This systematic review provides an overview of the literature regarding internal validity procedures in resistance training studies. Nonetheless, some limitations should be considered. An investigation of internal validity was based only on criteria included in the PEDro scale. Other variables may need to be considered when validity in resistance training research is investigated. From the present study, it is impossible to determine if internal validity limitations in the included studies were caused by shortcomings in the study design or reporting procedures. The sample used in the present review was limited to athletes; therefore, these findings may not be generalizable to studies involving non-athletes.

Although the PEDro scale is used to evaluate the quality of randomized controlled trials in systematic reviews, our findings showed that particular items of the PEDro scale may be used as a guideline in study design and conducting experimental research in strength and conditioning. The largest threats to internal validity in the studies we analyzed were associated with concealed allocation, intention-to-treat, and blinding of assessors of the main outcomes. Further improvement in the quality of studies should also involve random allocation to groups, ensuring that groups are similar at baseline, measures of key outcomes from the highest number of the subjects according to their initial allocation to groups, as well as one external validity variable (specification of eligibility criteria).

Conclusion

Because the current review showed that internal validity items like concealed allocation, intention to treat, and blinding of assessors of the main outcomes are often not reported in resistance training studies, the internal validity of future studies should be improved. Well-designed, wellconducted, and well-reported experimental research studies are essential to confirm whether training interventions improve outcomes as poorly designed and reported studies can mislead decision making in professional practice.

Acknowledgements

The study is supported by the Ministry of Education and Science, Poland, project Societal Duty of Science, grant within the SONP/SP/461408/2020, the Józef Piłsudski University of Physical Education in Warsaw, Poland, and the Polish Chamber of Physiotherapists. The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The experiments comply with the current laws of the country in which they were performed. The authors have no conflict of interest to declare. The datasets generated and analyzed during the current study are not publicly available, but are available from the corresponding author who was an organizer of the study.

References

- Abade, E., Sampaio, J., Santos, L., Goncalves, B., Sa, P., Carvalho, A., Gouveia, P. and Viana, J. (2020) Effects of using compound or complex strength-power training during in-season in team sports. *Research in Sports Medicine* 28, 371-382. https://doi.org/10.1080/15438627.2019.1697927
- Alcaraz, P.E., Elvira, J.L.L. and Palao, J.M. (2014) Kinematic, strength, and stiffness adaptations after a short- term sled towing training in athletes. *Scandinavian Journal of Medicine & Science in Sports* 24, 279-290. https://doi.org/10.1111/j.1600-0838.2012.01488.x
- Albanese, E., Bütikofer, L., Armijo-Olivo, S., Ha, C., and Egger, M. (2020) Construct validity of the Physiotherapy Evidence Database (PEDro) quality scale for randomized trials: Item response theory and factor analyses. *Research Synthesis Methods*, **11**, 227-236. https://doi.org/10.1002/jrsm.1385
- Ali, K., Verma, S., Ahmad, I., Singla, D., Saleem, M. and Hussain, M.E. (2019) Comparison of complex versus contrast training on steroid hormones and sports performance in male soccer players. *Journal of Chiropractic Medicine* 18, 131-138. https://doi.org/10.1016/j.jcm.2018.12.001
- Akl, E.A., Briel, M., You, J.J., Sun, X., Johnston, B.C., Busse, J.W., Mulla, S., Lamontagne, F., Bassler, D., Vera, C., et al. (2012) Potential impact on estimated treatment effects of information lost to follow-up in randomised controlled trials (LOST-IT): systematic review. *British Journal of Sports Medicine* 344, e2809. https://doi.org/10.1136/bmj.e2809
- Aloui, G., Hammami, M., Fathloun, M., Hermassi, S., Gaamouri, N., Shephard, R.J. and Chelly, M.S. (2019) Effects of an 8-week inseason elastic band training program on explosive muscle performance, change of direction, and repeated changes of direction in the lower limbs of junior male handball players. *Journal of Strength and Conditioning Research* 33, 1804-1815. https://doi.org/10.1519/JSC.00000000002786
- Alvarez, J.A.E., Reyes, P.J., Da Conceicao, F.A. and Garcia, J.P.F. (2021) Does the initial level of horizontal force determine the magnitude of improvement in acceleration performance in rugby? *European Journal of Sport Science* 21, 827-835.
- Alvarez, M., Sedano, S., Cuadrado, G. and Redondo, J.C. (2012) Effects of an 18-week strength training program on low-handicap golfers' performance. *Journal of Strength and Conditioning Research* 26, 1110-1121.

https://doi.org/10.1519/JSC.0b013e31822dfa7d

- Amonette, W.E., English, K.L. and Kraemer, W.J. (2016) Evidence-based practice in exercise science: the six-step approach. Champaign, IL: Human Kinetics. https://doi.org/10.5040/9781492595472
- Anderson, C.E., Sforzo, G.A. and Sigg, J.A. (2008) The effects of combining elastic and free weight resistance on strength and power in athletes. *Journal of Strength and Conditioning Research* 22, 567-574.

https://doi.org/10.1519/JSC.0b013e3181634d1e

- Appleby, B.B., Cormack, S.J. and Newton, R.U. (2019) Specificity and transfer of lower-body strength: Influence of bilateral or unilateral lower-body resistance training. *Journal of Strength* and Conditioning Research 33, 318-326. https://doi.org/10.1519/JSC.00000000002923
- Arazi, H. and Asadi, A. (2011) The effect of aquatic and land plyometric training on strength, sprint, and balance in young basketball players. *Journal of Human Sport and Exercise* 6, 101-111. https://doi.org/10.4100/jhse.2011.61.12
- Arazi, H., Khanmohammadi, A., Asadi, A. and Haff, G.G. (2018) The effect of resistance training set configuration on strength, power, and hormonal adaptation in female volleyball players. *Applied Physiology, Nutrition and Metabolism* **43**, 154-164. https://doi.org/10.1139/apnm-2017-0327
- Arede, J., Leite, N., Tous-Fajardo, J., Bishop, C. and Gonzalo-Skok, O. (2021) Enhancing high-intensity actions during a basketball game after a strength training program with random recovery times between sets. *Journal of Strength and Conditioning Research* https://doi.org/10.1519/JSC.0000000000004002
- Armijo-Olivo, S., Warren, S. and Magee, D. (2009) Intention to treat analysis, compliance, drop-outs and how to deal with missing data in clinical research: a review. *Physical Therapy Reviews* 14, 36-49. https://doi.org/10.1179/174328809X405928
- Ataee, J., Koozehchian, M.S., Kreider, R.B. and Zuo, L. (2014) Effectiveness of accommodation and constant resistance training

on maximal strength and power in trained athletes. *PeerJ* 2, e441. https://doi.org/10.7717/peerj.441

- Ayers, J.L., DeBeliso, M., Sevene, T.G. and Adams, K.J. (2016) Hang cleans and hang snatches produce similar improvements in female collegiate athletes. *Biology of Sport* 33, 251-256. https://doi.org/10.5604/20831862.1201814
- Bachero-Mena, B., Pareja-Blanco, F. and González-Badillo, J.J. (2021) Effects of resistance training on physical performance in highlevel 800-meter athletes: A comparison between high-speed resistance training and circuit training. *Journal of Strength and Conditioning Research* 35, 1905-1915.
- Balsalobre-Fernández, C., Santos-Concejero, J. and Grivas, G.V. (2016) Effects of strength training on running economy in highly trained runners: A systematic review with meta-analysis of controlled trials. *Journal of Strength and Conditioning Research* 30, 2361-2368. https://doi.org/10.1519/JSC.00000000001316
- Balsalobre-Fernandez, C., Tejero-González, C.M., Campo-Vecino, J.D. and Alonso-Curiel, D. (2013) The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers. *Journal of Human Kinetics* 36, 119-126. https://doi.org/10.2478/hukin-2013-0012
- Bartolomei, S., Hoffman, J.R., Merni, F. and Stout, J.R. (2014) A comparison of traditional and block periodized strength training programs in trained athletes. *Journal of Strength and Conditioning Research* 28, 990-997. https://doi.org/10.1519/JSC.000000000000366
- Bartolomei, S., Hoffman, J.R., Stout, J.R., Zini, M., Stefanelli, C. and Merni, F. (2016) Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. *Kinesiology* 48, 71-78. https://doi.org/10.26582/k.48.1.9
- Beattie, K., Carson, B.P., Lyons, M., Rossiter, A. and Kenny, I.C. (2017) The effect of strength training on performance indicators in distance runners. *Journal of Strength and Conditioning Research* 31, 9-23. https://doi.org/10.1519/JSC.000000000001464
- Ben Brahim, M., Bougatfa, R., Makni, E., Gonzalez, P.P., Yasin, H., Tarwneh, R., Moalla, W. and Elloumi, M. (2021) Effects of combined strength and resisted sprint training on physical performance in u-19 elite soccer players. *Journal of Strength and Conditioning Research* **35(12)**, 3432-3439. https://doi.org/10.1519/JSC.00000000003829
- Berger V.W. (2005) Selection bias and covariate imbalances in randomized clinical trials. Chichester, UK: John Wiley & Sons. https://doi.org/10.1002/0470863641
- Berryman, N., Maurel, D.B. and Bosquet, L. (2010) Effect of plyometric vs. dynamic weight training on the energy cost of running. *Journal of Strength and Conditioning Research* 24, 1818-1825. https://doi.org/10.1519/JSC.0b013e3181def1f5
- Berryman, N., Mujika, I. and Bosquet, L. (2021) Effects of short-term concurrent training cessation on the energy cost of running and neuromuscular performances in middle-distance runners. *Sports* 9, 1. https://doi.org/10.3390/sports9010001
- Beutler, L.E. and Martin, M.A. (1999) Publishing and communicating research findings: Seeking scientific objectivity. In P. C. Kendall, J. N. Butcher, & G. N. Holmbeck (Eds.), Handbook of research methods in clinical psychology (pp. 107–121). New York: John Wiley & Sons.
- Blagrove, R.C., Howatson, G. and Hayes, P.R. (2018) Effects of strength training on the physiological determinants of middle- and longdistance running performance: A systematic review. Sports Medicine 48, 1117-1149. https://doi.org/10.1007/s40279-017-0835-7
- Blazevich, A.J. and Jenkins, D.G. (2002) Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. *Journal of Sports Sciences* 20, 981-990. https://doi.org/10.1080/026404102321011742
- Brito, J., Vasconcellos, F., Oliveira, J., Krustrup, P. and Rebelo, A. (2014) Short-term performance effects of three different low-volume strength-training programmes in college male soccer players. *Journal of Human Kinetics* 40, 121-128. https://doi.org/10.2478/hukin-2014-0014
- Burnham, T.R., Ruud, J.D. and McGowan, R. (2010) Bench press training program with attached chains for female volleyball and basketball athletes. *Perceptual and Motor Skills* 110, 61-68. https://doi.org/10.2466/pms.110.1.61-68

https://doi.org/10.1519/JSC.000000000000000000

- Chelly, M.S., Ghenem, M.A., Abid, K., Hermassi, S., Tabka, Z. and Shephard, R.J. (2010) Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. *Journal of Strength and Conditioning Research* 24, 2670-2676. https://doi.org/10.1519/JSC.0b013e3181e2728f
- Cherif, M., Chtourou, H., Souissi, N., Aouidet, A. and Chamari, K. (2016) Maximal power training induced different improvement in throwing velocity and muscle strength according to playing positions in elite male handball players. *Biology of Sport* 33, 393-398. https://doi.org/10.5604/20831862.1224096
- Cherni, Y., Hammami, M., Jelid, M.C., Aloui, G., Suzuki, K., Shephard, R.J. and Chelly, M.S. (2021) Neuromuscular adaptations and enhancement of physical performance in female basketball players after 8 weeks of plyometric training. *Frontiers in Physiology* **11**. https://doi.org/10.3389/fphys.2020.588787
- Coratella, G., Beato, M., Ce, E., Scurati, R., Milanese, C., Schena, F. and Esposito, F. (2019) Effects of in-season enhanced negative workbased vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. *Biology of* Sport 36, 241-248. https://doi.org/10.5114/biolsport.2019.87045
- Crewther, B.T., Heke, T. and Keogh, J. (2016) The effects of two equalvolume training protocols upon strength, body composition and salivary hormones in male rugby union players. *Biology of Sport* 33, 111-116. https://doi.org/10.5604/20831862.1196511
- Cross, M.R., Lahti, J., Brown, S.R., Chedati, M., Jimenez-Reyes, P., Samozino, P., Eriksrud, O. and Morin, J.B. (2018) Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. *Plos One* 13, e0195477. https://doi.org/10.1371/journal.pone.0195477
- Cummings, P.M., Waldman, H.S., Krings, B., Smith, J.W. and McAllister, M.J. (2018) Effects of fat grip training on muscular strength and driving performance in division I male golfers. *Journal of Strength and Conditioning Research* 32, 205-210. https://doi.org/10.1519/JSC.000000000001844
- Davies, T.B., Kuang, K., Orr, R., Halaki, M. and Hackett, D. (2017) Effect of movement velocity during resistance training on dynamic muscular strength: a systematic review and meta-analysis. *Sports Medicine* 47, 1603-1617. https://doi.org/10.1007/s40279-017-0676-4
- Dolezal, S.M., Frese, D.L. and Llewellyn, T.L. (2016) The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes. *International Journal of Exercise Science* 9, 657-666.
- Douglas, J., Pearson, S., Ross, A. and McGuigan, M. (2018) Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. *Journal of Strength and Conditioning Research* 32, 2750-2761. https://doi.org/10.1519/JSC.00000000002772
- Dumville, J.C., Torgerson D.J. and Hewitt C.E. (2006) Reporting attrition in randomised controlled trials. *British Journal of Sports Medicine* 332, 969-71.

https://doi.org/10.1136/bmj.332.7547.969

- Elkins, M. (2013) Concealed allocation in randomised trials. Journal of Physiotherapy 59, 134-136. https://doi.org/10.1016/S1836-9553(13)70174-7
- Elkins, M.R. and Moseley, A.M. (2015) Intention-to-treat analysis. *Journal of Physiotherapy* **61**, 165-167. https://doi.org/10.1016/j.jphys.2015.05.013
- El-Ashker, S., Hassan, A., Taiar, R. and Tilp, M. (2019) Long jump training emphasizing plyometric exercises is more effective than traditional long jump training: A randomized controlled trial. *Journal of Human Sport and Exercise* 14, 215-224. https://doi.org/10.14198/jhse.2019.141.18
- Enoksen, E., Staxrud, M., Tønnessen, E. and Shalfawi, S.A.I. (2013) The effect of supervised strength training on young elite male soccer players' physical performance. *Serbian Journal of Sports Sciences* 7, 195-201.
- Faude, O., Roth, R., Di Giovine, D., Zahner, L. and Donath, L. (2013) Combined strength and power training in high-level amateur football during the competitive season: a randomised-controlled

trial. Journal of Sports Sciences **31**, 1460-1467. https://doi.org/10.1080/02640414.2013.796065

- Franchini, E., Branco, B.M., Agostinho, M.F., Calmet, M. and Candau, R. (2015) Influence of linear and undulating strength periodization on physical fitness, physiological, and performance responses to simulated judo matches. *Journal of Strength and Conditioning Research* 29, 358-367. https://doi.org/10.1519/JSC.000000000000460
- Freitas, T.T., Calleja-Gonzalez, J., Carlos-Vivas, J., Marin-Cascales, E. and Alcaraz, P.E. (2019) Short-term optimal load training vs a modified complex training in semi-professional basketball players. *Journal of Sports Sciences* 37, 434-442. https://doi.org/10.1080/02640414.2018.1504618
- Ghigiarelli, J.J., Nagle, E.F., Gross, F.L., Robertson, R.J., Irrgang, J.J. and Myslinski, T. (2009) The effects of a 7-week heavy elastic band and weight chain program on upper-body strength and upperbody power in a sample of division 1-AA football players. *Journal of Strength and Conditioning Research* 23, 756-764. https://doi.org/10.1519/JSC.0b013e3181a2b8a2
- Gil-Cabrera, J., Valenzuela, P.L., Alejo, L.B., Talavera, E., Montalvo-Pérez, A., Lucia, A. and Barranco-Gil, D. (2021) Traditional versus optimum power load training in professional cyclists: a randomized controlled trial. *International Journal of Sports Physiology and Performance* 16, 496-503. https://doi.org/10.1123/ijspp.2020-0130
- Gjinovci, B., Idrizovic, K., Uljevic, O. and Sekulic, D. (2017) Plyometric training improves sprinting, jumping and throwing capacities of high level female volleyball players better than skill-based conditioning. *Journal of Sports Science and Medicine* 16, 527-535.
- Grazioli, R., Loturco, I., Lopez, P., Setuain, I., Goulart, J., Veeck, F., Inácio, M., Izquierdo, M., Pinto, R.S. and Cadore, E.L. (2020) Effects of moderate-to-heavy sled training using different magnitudes of velocity loss in professional soccer players. *Journal of Strength and Conditioning Research* https://doi.org/10.1519/JSC.00000000003813
- Grgic, J., Lazinica, B., Schoenfeld, B. J. and Pedisic, Z. (2020) Test–retest reliability of the one-repetition maximum (1RM) strength assessment: a systematic review. *Sports Medicine-Open* **6**, 1-16. https://doi.org/10.1186/s40798-020-00260-z
- Guglielmo, L.G.A., Greco, C.C. and Denadai, B.S. (2009) Effects of strength training on running economy. *International Journal of Sports Medicine* **30**, 27-32. https://doi.org/10.1055/s-2008-1038792
- Hansen, K.T., Cronin, J.B., Pickering, S.L. and Newton, M.J. (2011) Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? *Journal of Strength and Conditioning Research* 25, 2118-2126. https://doi.org/10.1519/JSC.0b013e318220b6a3
- Harris, N.K., Cronin, J.B., Hopkins, W.G. and Hansen, K.T. (2008) Squat jump training at maximal power loads vs. heavy loads: effect on sprint ability. *Journal of Strength and Conditioning Research* 22, 1742-1749. https://doi.org/10.1519/JSC.0b013e318187458a
- Harries, S.K., Lubans, D.R. and Callister, R. (2015) Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. *Journal of Strength and Conditioning Research* 29, 1113-1125. https://doi.org/10.1519/JSC.000000000000712
- Harrison, A.J. and Bourke, G. (2009) The effect of resisted sprint training on speed and strength performance in male rugby players. *Journal of Strength and Conditioning Research* 23, 275-283. https://doi.org/10.1519/JSC.0b013e318196b81f
- Hermassi, S., Chelly, M.S., Fathloun, M. and Shephard, R.J. (2010) The effect of heavy-vs. moderate-load training on the development of strength, power, and throwing ball velocity in male handball players. *Journal of Strength and Conditioning Research* 24, 2408-2418. https://doi.org/10.1519/JSC.0b013e3181e58d7c
- Hermassi, S., Chelly, M.S., Fieseler, G., Bartels, T., Schulze, S., Delank, K.S., Shephard, R.J. and Schwesig, R. (2017) Effects of inseason explosive strength training on maximal leg strength, jumping, sprinting, and intermittent aerobic performance in male handball athletes. *Sportverletzung-Sportschaden* **31**, 167-173. https://doi.org/10.1055/s-0043-103469
- Hermassi, S., Chelly, M.S., Tabka, Z., Shephard, R.J. and Chamari, K. (2011) Effects of 8-week in-season upper and lower limb heavy resistance training on the peak power, throwing velocity, and sprint performance of elite male handball players. *Journal of*

Strength and Conditioning Research 25, 2424-2433. https://doi.org/10.1519/JSC.0b013e3182030edb

- Hermassi, S., Gabbett, T.J., Ingebrigtsen, J., van den Tillaar, R., Chelly, M.S. and Chamari, K. (2014) Effects of a short-term in-season plyometric training program on repeated-sprint ability, leg power and jump performance of elite handball players. *International Journal of Sports Science & Coaching* 9, 1205-1216. https://doi.org/10.1260/1747-9541.9.5.1205
- Hermassi, S., Van Den Tillaar, R., Khlifa, R., Chelly, M.S. and Chamari, K. (2015) Comparison of in-season-specific resistance vs. a regular throwing training program on throwing velocity, anthropometry, and power performance in elite handball players. *Journal of Strength and Conditioning Research* 29, 2105-2114. https://doi.org/10.1519/JSC.000000000000855
- Hermassi, S., Ghaith, A., Schwesig, R., Shephard, R.J. and Chelly, M.S. (2019a) Effects of short-term resistance training and tapering on maximal strength, peak power, throwing ball velocity, and sprint performance in handball players. *Plos One* 14, e0214827. https://doi.org/10.1371/journal.pone.0214827
- Hermassi, S., Haddad, M., Bouhafs, E., Laudner, K.G. and Schwesig, R. (2019b) Comparison of a Combined Strength and Handball-Specific Training vs. Isolated Strength Training in Handball Players Studying Physical Education. Sportserletzung-Sportschaden 33, 149-159. https://doi.org/10.1055/a-0919-7267
- Hermassi, S., Schwesig, R., Aloui, G., Shephard, R.J. and Chelly, M.S. (2019c) Effects of short-term in-season weightlifting training on the muscle strength, peak power, sprint performance, and ballthrowing velocity of male handball players. *Journal of Strength* and Conditioning Research 33, 3309-3321. https://doi.org/10.1519/JSC.000000000003068
- Hermassi, S., Laudner, K. and Schwesig, R. (2020) The effects of circuit strength training on the development of physical fitness and performance-related variables in handball players. *Journal of Human Kinetics* 71, 191-203. https://doi.org/10.2478/hukin-2019-0083
- Hertzog, M., Rumpf, M.C. and Hader, K. (2020) Resistance Training Status and Effectiveness of Low-Frequency Resistance Training on Upper-Body Strength and Power in Highly Trained Soccer Players. *Journal of Strength and Conditioning Research* 34, 1032-1039. https://doi.org/10.1519/JSC.00000000002202
- Hoff, J. and Almasbakk, B. (1995) The effects of maximum strength training on throwing velocity and muscle strength in female team-handball players. *Journal of Strength & Conditioning Research* 9, 255-258. https://doi.org/10.1519/00124278-199511000-00011
- Hoff, J., Gran, A. and Helgerud, J. (2002) Maximal strength training improves aerobic endurance performance. *Scandinavian Journal* of Medicine and Science in Sports 12, 288-295. https://doi.org/10.1034/j.1600-0838.2002.01140.x
- Hoffman, J.R., Cooper, J., Wendell, M. and Kang, J. (2004) Comparison of olympic vs. traditional power lifting training programs in football players. *Journal of Strength and Conditioning Research* 18, 129-135. https://doi.org/10.1519/00124278-200402000-00019
- Hoffman, J.R., Kraemer, W.J., Fry, A.C., Deschenes, M. and Kemp, M. (1990) The effects of self-selection for frequency of training in a winter conditioning program for football. *Journal of Applied Sport Science Research* 4, 76-82. https://doi.org/10.1519/00124278-199008000-00003
- Hoffman, J.R., Fry, A.C., Howard, R., Maresh, C.M. and Kraemer, W.J. (1991a) Strength, speed and endurance changes during the course of a division I basketball season. *Journal of Applied Sport Science Research* 5, 144-149. https://doi.org/10.1519/00124278-199108000-00006
- Hoffman, J.R., Maresh, C.M., Armstrong, L.E. and Kraemer, W.J. (1991b) Effects of off-season and in-season resistance training programs on a collegiate male basketball team. *Journal of Human Muscle Performance* 1, 48-55.
- Hoffman, J.R., Ratamess, N.A., Cooper, J.J., Kang, J., Chilakos, A. and Faigenbaum, A.D. (2005) Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. *Journal of Strength and Conditioning Research* 19, 810-815. https://doi.org/10.1519/00124278-200511000-00014
- Hoffman, J.R., Ratamess, N.A., Klatt, M., Faigenbaum, A.D., Ross, R.E., Tranchina, N.M., McCurley, R.C., Kang, J. and Kraemer, W.J. (2009) Comparison between different off-season resistance

317

training programs in division III American college football players. *Journal of Strength and Conditioning Research* 23, 11-19. https://doi.org/10.1519/JSC.0b013e3181876a78

- Hong-Sun, S., Dong-Ho, P. and Dong-Sik, J. (2009) The effect of periodized strength training application on the korea national team. *International Journal of Applied Sports Sciences* 21, 122-145.
- Horwath, O., Paulsen, G., Esping, T., Seynnes, O. and Olsson, M.C. (2019) Isokinetic resistance training combined with eccentric overload improves athletic performance and induces muscle hypertrophy in young ice hockey players. *Journal of Science and Medicine* in Sport 22, 821-826. https://doi.org/10.1016/j.jsams.2018.12.017
- Iacono, A.D., Martone, D., Milic, M. and Padulo, J. (2017) Vertical-vs. horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. *Journal of Strength & Conditioning Research* 31, 921-931. https://doi.org/10.1519/JSC.000000000001555
- Impellizzeri, F.M., Rampinini, E., Castagna, C., Martino, F., Fiorini, S. and Wisloff, U. (2008) Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. *British Journal of Sports Medicine* 42, 2105-2114. https://doi.org/10.1136/bjsm.2007.038497
- Iodice, P., Trecroci, A., Dian, D., Proietti, G., Alberti, G. and Formenti, D. (2020) Slow-speed resistance training increases skeletal muscle contractile properties and power production capacity in elite futsal players. *Frontiers in Sports and Active Living* 2, 8. https://doi.org/10.3389/fspor.2020.00008
- Izquierdo-Gabarren, M., Exposito, R.G.D., Garcia-Pallares, J., Sanchez-Medina, L., De Villarreal, E.S.S. and Izquierdo, M. (2010) Concurrent endurance and strength training not to failure optimizes performance gains. *Medicine and Science in Sports* and Exercise 42, 1191-1199. https://doi.org/10.1249/MSS.0b013e3181c67eec
- Jones, K., Hunter, G., Fleisig, G., Escamilla, R. and Lemak, L. (1999) The effects of compensatory acceleration on upper-body strength and power in collegiate football players. *Journal of Strength and Conditioning Research* 13, 99-105. https://doi.org/10.1519/00124278-199905000-00001
- Joy, J.M., Lowery, R.P., Oliveira De Souza, E. and Wilson, J.M. (2016) Elastic bands as a component of periodized resistance training. *Journal of Strength and Conditioning Research* 30, 2100-2106. https://doi.org/10.1519/JSC.0b013e3182986bef
- Jüni, P., Altman, D.G. and Egger, M. (2001) Assessing the quality of controlled clinical trials. *British Journal of Sports Medicine* 323, 42-46. https://doi.org/10.1136/bmj.323.7303.42
- Kale, M. (2016) Effects of 6-week pre-season plyometric training to performance characteristics in female handball players. *Physical Culture* 70, 145-154.
- Katushabe, E.T. and Kramer, M. (2020) Effects of combined power band resistance training on sprint speed, agility, vertical jump height, and strength in collegiate soccer players. *International Journal* of Exercise Science 13, 950-963.
- Kostikiadis, I.N., Methenitis, S., Tsoukos, A., Veligekas, P., Terzis, G. and Bogdanis, G.C. (2018) The effect of short-term sportspecific strength and conditioning training on physical fitness of well-trained mixed martial arts athletes. *Journal of Sports Science and Medicine* 17, 348-358.
- Kraemer, W.J., Haekkinen, K., Triplett-McBride, N.T., Fry, A.C., Koziris, L.P., Ratamess, N.A., Bauer, J.E., Volek, J.S., McConnell, T., Newton, R.U., Gordon, S.E., Cummings, D., Hauth, J., Pullo, F., Lynch, J.M., Mazzetti, S.A., Knuttgen, H.G. and Fleck, S.J. (2003) Physiological changes with periodized resistance training in women tennis players. *Medicine & Science in Sports & Exercise* 35, 157-168. https://doi.org/10.1097/00005768-200301000-00024
- Kwok, W.Y., So, B.C.L., Tse, D.H.T. and Ng, S.S.M. (2021) A systematic review and meta-analysis: biomechanical evaluation of the effectiveness of strength and conditioning training programs on front crawl swimming performance. *Journal of Sports Science and Medicine* 20, 564-585. https://doi.org/10.52082/jssm.2021.564
- Lago-Fuentes, C., Rey, E., Padron-Cabo, A., de Rellan-Guerra, A.S., Fragueiro-Rodriguez, A. and Garcia-Nunez, J. (2018) Effects of core strength training using stable and unstable surfaces on physical fitness and functional performance in professional female futsal players. *Journal of Human Kinetics* 65, 213-224.

https://doi.org/10.2478/hukin-2018-0029

- Lahti, J., Huuhka, T., Romero, V., Bezodis, I., Morin, J.B. and Hakkinen, K. (2020) Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. *PeerJ* 8, e10507. https://doi.org/10.7717/peerj.10507
- Li, F., Wang, R., Newton, R.U., Sutton, D., Shi, Y. and Ding, H.Y. (2019) Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. *PeerJ* 7, e6787. https://doi.org/10.7717/peerj.6787
- Lin, Y., Zhu, M., and Su, Z. (2015) The pursuit of balance: an overview of covariate-adaptive randomization techniques in clinical trials. *Contemporary Clinical Trials* 45, 21-25. https://doi.org/10.1016/j.cct.2015.07.011
- Losnegard, T., Mikkelsen, K., Rønnestad, B.R., Hallén, J., Rud, B. and Raastad, T. (2011) The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. *Scandinavian Journal of Medicine and Science in Sports* 21, 389-401. https://doi.org/10.1111/j.1600-0838.2009.01074.x
- Loturco, I., Kobal, R., Kitamura, K., Abad, C.C.C., Faust, B., Almeida, L. and Pereira, L.A. (2017) Mixed training methods: effects of combining resisted sprints or plyometrics with optimum power loads on sprint and agility performance in professional soccer players. *Frontiers in Physiology* 8, 1034. https://doi.org/10.3389/fphys.2017.01034
- Loturco, I., Pereira, L.A., Kobal, R., Zanetti, V., Kitamura, K., Abad, C.C.C. and Nakamura, F.Y. (2015) Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. *Journal of Sports Sciences* 33, 2182-2191. https://doi.org/10.1080/02640414.2015.1081394
- Loturco, I., Ugrinowitsch, C., Tricoli, V., Pivetti, B. and Roschel, H. (2013) Different loading schemes in power training during the preseason promote similar performance improvements in brazilian elite soccer players. *Journal of Strength and Conditioning Research* 27, 1791-1797. https://doi.org/10.1519/JSC.0b013e3182772da6
- Maher, C.G., Sherrington, C., Herbert, R.D., Moseley, A.M. and Elkins, M. (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. *Physical Therapy* 83, 713-721. https://doi.org/10.1093/ptj/83.8.713
- Manouras, N., Papanikolaou, Z., Karatrantou, K., Kouvarakis, P. and Gerodimos, V. (2016) The efficacy of vertical vs. horizontal plyometric training on speed, jumping performance and agility in soccer players. *International Journal of Sports Science & Coaching* 11, 702-709. https://doi.org/10.1177/1747954116667108
- Maroto-Izquierdo, S., García-López, D. and De Paz, J.A. (2017) Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. *Journal of Human Kinetics* 60, 133-143. https://doi.org/10.1515/hukin-2017-0096
- Marques, D.L., Travassos, B., Sousa, A.C., Gil, M.H., Ribeiro, J.N. and Marques, M.C. (2019) Effects of low-moderate load highvelocity resistance training on physical performance of under-20 futsal players. *Sports* 7, 69. https://doi.org/10.3390/sports7030069
- Marques, M.A.C. and Gonzalez-Badillo, J.J. (2006) In-season resistance training and detraining in professional team handball players. *Journal of Strength and Conditioning Research* 20, 563-571. https://doi.org/10.1519/R-17365.1
- McCurdy, K., Langford, G., Ernest, J., Jenkerson, D. and Doscher, M. (2009) Comparison of chain- and plate-loaded bench press training on strength, joint pain, and muscle soreness in division ii baseball players. *Journal of Strength and Conditioning Research* 23, 187-195.

https://doi.org/10.1519/JSC.0b013e31818892b5

- McMaster, D., Gill, N., McGuigan, M. and Cronin, J. (2014) Effects of complex strength and ballistic training on maximum strength, sprint ability and force-velocity-power profiles of semiprofessional rugby union players. *Journal of Australian Strength* & Conditioning 22, 17-30.
- McMorrow, B.J., Ditroilo, M. and Egan, B. (2019) Effect of heavy resisted sled sprint training during the competitive season on sprint and change-of-direction performance in professional soccer players. *International Journal of Sports Physiology and Performance* 14, 1066-1073.

https://doi.org/10.1123/ijspp.2018-0592

- Mizrak, O. (2015) The effects of human resistance training on muscular strength. *Anthropologist* **21**, 380-384. https://doi.org/10.1080/09720073.2015.11891828
- Mohanta, N., Kalra, S. and Pawaria, S. (2019) A comparative study of circuit training and plyometric training on strength, speed and agility in state level lawn tennis players. *Journal of Clinical and Diagnostic Research* 13, 5-10. https://doi.org/10.7860/JCDR/2019/42431.13348
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. and Group, P. (2009) Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. *Plos Medicine* 6, e1000097e1000097. https://doi.org/10.1136/bmj.b2535
- Moore, E.W.G., Hickey, M.S. and Reiser, R.F. (2005) Comparison of two twelve week off-season combined training programs on entry level collegiate soccer players' performance. *Journal of Strength* and Conditioning Research 19, 791-798. https://doi.org/10.1519/R-15384.1
- Morin, J.-B., Capelo-Ramirez, F., Rodriguez-Pérez, M.A., Cross, M.R. and Jimenez-Reyes, P. (2022) Individual adaptation kinetics following heavy resisted sprint training. *Journal of Strength and Conditioning Research* 36(4), 1158-1161. https://doi.org/10.1519/JSC.00000000003546
- Moseley, A.M., Herbert, R.D., Maher, C.G., Sherrington, C. and Elkins, M.R. (2011) Reported quality of randomized controlled trials of physiotherapy interventions has improved over time. *Journal of Clinical Epidemiology* 64, 594-601. https://doi.org/10.1016/j.jclinepi.2010.08.009
- Nakai, M., Chen, D. G., Nishimura, K. and Miyamoto, Y. (2014) Comparative study of four methods in missing value imputations under missing completely at random mechanism. *Open Journal* of Statistics 4. https://doi.org/10.4236/ojs.2014.41004
- Nonnato, A., Hulton, A.T., Brownlee, T.E. and Beato, M. (2022) The effect of a single session of plyometric training per week on fitness parameters in professional female soccer players: a randomized controlled trial. *Journal of Strength and Conditioning Research* **36(4)**, 1046-1052. https://doi.org/10.1519/JSC.000000000003591
- Oberacker, L.M., Davis, S.E., Haff, G.G., Witmer, C.A. and Moir, G.L. (2012) The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. *Journal of Strength and Conditioning Research* **26**, 2734-2740. https://doi.org/10.1519/JSC.0b013e318242a32a
- Odgaard-Jensen, J., Vist, G.E., Timmer, A., Kunz, R., Akl, E.A., Schünemann, H., Briel, M., Nordmann, A.J., Pregno, S. and Oxman, A.D. (2011) (2011) Randomisation to protect against selection bias in healthcare trials. *Cochrane Database of Systematic Reviews* 4:MR000412. https://doi.org/10.1002/14651858.MR000012.pub3
- Oranchuk, D.J., Ecsedy, E.N. and Robinson, T.L. (2020) Effects of a sport-specific upper-body resistance-band training program on overhead throwing velocity and glenohumeral joint range of motion. *Journal of Strength and Conditioning Research* 3. https://doi.org/10.1519/JSC.00000000003303
- Ozbar, N. (2015) Effects of plyometric training on explosive strength, speed and kicking speed in female soccer players. *Anthropologist* **19**, 333-339. https://doi.org/10.1080/09720073.2015.11891666
- Ozbar, N., Ates, S. and Agopyan, A. (2014) The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. *Journal of Strength and Conditioning Research* 28, 2888-2894. https://doi.org/10.1519/JSC.000000000000541
- Paavolainen, L., Hakkinen, K., Hamalainen, I., Nummela, A. and Rusko, H. (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. *Journal* of Applied Physiology 86, 1527-1533.

https://doi.org/10.1152/jappl.1999.86.5.1527

- Pacholek, M. and Zemkova, E. (2020) Effect of two strength training models on muscle power and strength in elite women's football players. Sports 8, 42. https://doi.org/10.3390/sports8040042
- Pareja-Blanco, F., Sanchez-Medina, L., Suarez-Arrones, L. and Gonzalez-Badillo, J.J. (2017) Effects of velocity loss during resistance training on performance in professional soccer players. *International Journal of Sports Physiology and Performance* 12, 512-519. https://doi.org/10.1123/ijspp.2016-0170

- Paz-Franco, A., Rey, E. and Barcala-Furelos, R. (2017) Effects of 3 different resistance training frequencies on jump, sprint, and repeated sprint ability performances in professional futsal players. *Journal of Strength and Conditioning Research* 31, 3343-3350. https://doi.org/10.1519/JSC.000000000001766
- Pearson, S.N., Cronin, J.B., Hume, P.A. and Slyfield, D. (2009) Effects of a power-focussed resistance training intervention on backward grinding performance in America's Cup sailing. *Sports Biomechanics* 8, 334-344. https://doi.org/10.1080/14763140903414433
- Pedersen, S., Heitmann, K.A., Sagelv, E.H., Johansen, D. and Pettersen, S.A. (2019) Improved maximal strength is not associated with improvements in sprint time or jump height in high-level female football players: a clusterrendomized controlled trial. *Bmc Sports Science Medicine and Rehabilitation* 11, 1-8. https://doi.org/10.1186/s13102-019-0133-9
- Prokopy, M.P., Ingersoll, C.D., Nordenschild, E., Katch, F.I., Gaesser, G.A. and Weltman, A. (2008) Closed-kinetic chain upper-body training improves throwing performance of NCAA division i softball players. *Journal of Strength and Conditioning Research* 22, 1790-1798. https://doi.org/10.1519/JSC.0b013e318185f637
- Ramírez-Campillo, R., Alvarez, C., Henríquez-Olguín, C., Baez, E.B., Martínez, C., Andrade, D.C. and Izquierdo, M. (2014) Effects of plyometric training on endurance and explosive strength performance in competitive middle- and long-distance runners. *Journal of Strength and Conditioning Research* 28, 97-104. https://doi.org/10.1519/JSC.0b013e3182a1f44c
- Ramos Veliz, R., Requena, B., Suarez-Arrones, L., Newton, R.U. and Sáez de Villarreal, E. (2014) Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players. *Journal of Strength and Conditioning Research* 28, 1007-1014.
- https://doi.org/10.1519/JSC.000000000000240 Randell, A.D., Cronin, J.B., Keogh, J.W.L., Gill, N.D. and Pedersen, M.C. (2011) Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. *Journal of Strength and Conditioning Research* **25**, 87-93.

https://doi.org/10.1519/JSC.0b013e3181fee634

- Rey, E., Padron-Cabo, A. and Fernandez-Penedo, D. (2017) Effects of sprint training with and without weighted vest on speed and repeated sprint ability in male soccer players. *Journal of Strength* and Conditioning Research **31**, 2659-2666. https://doi.org/10.1519/JSC.000000000001726
- Richards, J.A. and Dawson, T.A. (2009) Optimizing exercise outcomes: The efficacy of resistance training using conventional vs. novel movement arcs. *Journal of Strength and Conditioning Research* 23, 2015-2024. https://doi.org/10.1519/JSC.0b013e3181b43aa6
- Rodríguez-Rosell, D., Torres-Torrelo, J., Franco-Márquez, F., González-Suárez, J.M. and González-Badillo, J.J. (2017) Effects of lightload maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players. *Journal of Science and Medicine in Sport* 20, 695-699.
- https://doi.org/10.1016/j.jsams.2016.11.010
- Rønnestad, B., Kojedal, Ø., Losnegard, T., Kvamme, B. and Raastad, T. (2012) Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in welltrained Nordic Combined athletes. *European Journal of Applied Physiology* **112**, 2341-2352. https://doi.org/10.1007/s00421-011-2204-9
- Ronnestad, B.R., Kvamme, N.H., Sunde, A. and Raastad, T. (2008) Shortterm effects of strength and plyometric training on sprint and jump performance in professional soccer players. *Journal of Strength and Conditioning Research* 22, 773-780. https://doi.org/10.1519/JSC.0b013e31816a5e86
- Rønnestad, B.R., Nymark, B.S. and Raastad, T. (2011) Effects of inseason strength maintenance training frequency in professional soccer players. *Journal of Strength and Conditioning Research* 25, 2653-2660. https://doi.org/10.1519/JSC.0b013e31822dcd96
- Sabido, R., Hernandez-Davo, J.L., Botella, J., Navarro, A. and Tous-Fajardo, J. (2017) Effects of adding a weekly eccentric-overload training session on strength and athletic performance in teamhandball players. *European Journal of Sport Science* 17, 530-538. https://doi.org/10.1080/17461391.2017.1282046

- Savović, J., Jones, H.E., Altman, D.G., Harris, R.J., Jüni, P., Pildal, J., Als-Nielsen, B., Balk, E.M., Gluud, C. and Gluud, L.L. (2012) Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials. *Annals of Internal Medicine* 157, 429-438. https://doi.org/10.7326/0003-4819-157-6-201209180-00537
- Sáez de Villarreal, E., Suarez-Arrones, L., Requena, B., Haff, G.G. and Ramos Veliz, R. (2015) Enhancing performance in professional water polo players: dryland training, in-water training, and combined training. *Journal of Strength and Conditioning Research* 29, 1089-1097. https://doi.org/10.1519/JSC.0000000000000707
- Schulz, K.F., Chalmers, I., Hayes, R.J., and Altman, D.G. (1995) Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *Journal of the American Medical Association* 273, 408-412. https://doi.org/10.1001/jama.273.5.408
- Schulz, K.F. and Grimes, D.A. (2002) Allocation concealment in randomised trials: defending against deciphering. *The Lancet* 359, 614-618. https://doi.org/10.1016/S0140-6736(02)07750-4
- Schulz, K.F., Altman, D.G. and Moher, D. (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. *Annals of Internal Medicine* 152, 726-732. https://doi.org/10.7326/0003-4819-152-11-201006010-00232
- Sedano, S., Marín, P.J., Cuadrado, G. and Redondo, J.C. (2013) Concurrent training in elite male runners: The influence of strength versus muscular endurance training on performance outcomes. *Journal of Strength and Conditioning Research* 27, 2433-2443. https://doi.org/10.1519/JSC.0b013e318280cc26
- Seitz, L.B., Reyes, A., Tran, T.T., de Villarreal, E.S. and Haff, G.G. (2014) Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. *Sports Medicine* 44, 1693-1702. https://doi.org/10.1007/s40279-014-0227-1
- Seo, D. I., Kim, E., Fahs, C. A., Rossow, L., Young, K., Ferguson, S. L., Thiebaud, R., Sherk, V.D., Loenneke, J.P., Kim D., Lee M., Choi K., Bemben, dD.A., Bemben M.G. and So, W. Y. (2012). Reliability of the one-repetition maximum test based on muscle group and gender. *Journal of sports science & medicine*, **11(2)**, 221. https://pubmed.ncbi.nlm.nih.gov/24149193/
- Shalfawi, S.A.I., Haugen, T., Jakobsen, T.A., Enoksen, E. and Tønnessen, E. (2013) The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. *Journal of Strength and Conditioning Research* 27, 2966-2972. https://doi.org/10.1519/JSC.0b013e31828c2889
- Singh, J., Appleby, B.B. and Lavender, A.P. (2018) Effect of plyometric training on speed and change of direction ability in elite field hockey players. *Sports* 6, 144. https://doi.org/10.3390/sports6040144
- Smart, N.A., Waldron, M., Ismail, H., Giallauria, F., Vigorito, C., Cornelissen, V. and Dieberg, G. (2015) Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. *JBI Evidence Implementation* 13, 9-18. https://doi.org/10.1097/XEB.00000000000020
- Speirs, D.E., Bennett, M.A., Finn, C.V. and Turner, A.P. (2016) Unilateral vs. bilateral squat training for strength, sprints, and agility in academy rugby players. *Journal of Strength and Conditioning Research* **30**, 386-392. https://doi.org/10.1519/JSC.000000000001096
- Spinet, J., Figueiredo, T., Willardson, J., Bastos de Oliveira, V., Assis, M., Fernandes de Oliveira, L., Miranda, H., Machado de Ribeiro Reis, V.M. and Simao, R. (2019) Comparison between traditional strength training and complex contrast training on soccer players. *Journal of Sports Medicine and Physical Fitness* 59, 42-49. https://doi.org/10.23736/S0022-4707.18.07934-3
- Støren, Ø., Helgerud, J., Støa, E.M. and Hoff, J. (2008) Maximal strength training improves running economy in distance runners. *Medicine & Science in Sports & Exercise* 40, 1087-1092. https://doi.org/10.1249/MSS.0b013e318168da2f
- Styles, W.J., Matthews, M.J. and Comfort, P. (2016) Effects of strength training on squat and sprint performance in soccer players. *Journal of Strength and Conditioning Research* 30, 1534-1539. https://doi.org/10.1519/JSC.000000000001243
- Taher, A.V., Pavlovic, R., Ahanjan, S., Skrypchenko, I. and Joksimovic, M. (2021) Effects of vertical and horizontal plyometric exercises

on explosive capacity and kinetic variables in professional long jump athletes. *Pedagogy of Physical Culture and Sports* **25**, 108-113. https://doi.org/10.15561/26649837.2021.0205

- Taylor, S., and Asmundson, G. J. (2008) Internal and external validity in clinical research. *Handbook of research methods in abnormal* and clinical psychology vol?, 23-34.
- Thiele, D., Prieske, O., Chaabene, H. and Granacher, U. (2020) Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers: A systematic review with meta-analysis. *Journal of Sports Sciences* 38, 1186-1195. https://doi.org/10.1080/02640414.2020.1745502
- Torres-Torrelo, J., Rodriguez-Rosell, D. and Gonzalez-Badillo, J.J. (2017) Light-load maximal lifting velocity full squat training program improves important physical and skill characteristics in futsal players. *Journal of Sports Sciences* 35, 967-975. https://doi.org/10.1080/02640414.2016.1206663
- Torres-Torrelo, J., Rodriguez-Rosell, D., Mora-Custodio, R., Pareja-Blanco, F., Yanez-Garcia, J.M. and Gonzalez-Badillo, J.J. (2018) Effects of resistance training and combined training program on repeated sprint ability in futsal players. *International Journal of Sports Medicine* **39**, 517-526. https://doi.org/10.1055/a-0596-7497
- Trowell, D., Vicenzino, B., Saunders, N., Fox, A. and Bonacci, J. (2020) Effect of strength training on biomechanical and neuromuscular variables in distance runners: a systematic review and metaanalysis. *Sports Medicine* **50**, 133-150. https://doi.org/10.1007/s40279-019-01184-9
- .Twist, C., Williams, J., and Dobbin, N. (2021) Deteriorations in physical qualities during a 10-week unsupervised off-season period in academy rugby union players. *Science and Medicine in Football*, 1-8. https://doi.org/10.1080/24733938.2021.1959944
- Veliz, R.R., Requena, B., Suarez-Arrones, L., Newton, R.U. and De Villarreal, E.S. (2014) Effects of 18-week in-season heavyresistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players. *Journal of Strength and Conditioning Research* 28, 1007-1014.

https://doi.org/10.1519/JSC.000000000000240

- Veliz, R.R., Suarez-Arrones, L., Requena, B., Haff, G.G., Feito, J. and De Villarreal, E.S. (2015) Effects of in-competitive season poweroriented and heavy resistance lower-body training on performance of elite female water polo players. *Journal of Strength and Conditioning Research* 29, 458-465. https://doi.org/10.1519/JSC.000000000000643
- Verhagen, A.P., De Vet, H.C., De Bie, R.A., Kessels, A.G., Boers, M., Bouter, L.M. and Knipschild, P.G. (1998) The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. *Journal of Clinical Epidemiology* 51, 1235-1241. https://doi.org/10.1016/S0895-4356(98)00131-0
- Watkins, C.M., Gill, N.D., Maunder, E., Downes, P., Young, J.D., McGuigan, M.R. and Storey, A.G. (2021) The effect of lowvolume preseason plyometric training on force-velocity profiles in semiprofessional rugby union players. *Journal of Strength & Conditioning Research* 35, 604-615. https://doi.org/10.1519/JSC.00000000003917
- Zabaloy, S., Pareja-Blanco, F., Giráldez, J.C., Rasmussen, J.I. and González, J.G. (2020) Effects of individualised training programmes based on the force-velocity imbalance on physical performance in rugby players. *Isokinetics and Exercise Science* 28, 181-190. https://doi.org/10.3233/IES-192196
- Zaferanieh, A., Haghighi, A.H., Kakhak, S.A.H., Maleki, A., Cè, E. and Esposito, F. (2021) Effect of ballistic and power training on performance adaptations of élite table tennis players. Sport Sciences for Health 17, 181-190. https://doi.org/10.1007/s11332-020-00671-1

Key points

- The implementation of internal validity procedures is often not satisfied in resistance training research.
- A high risk of bias in resistance training studies was identified in the following criteria: concealed allocations, assessor blinding, and intention-to-treat.
- Follow-up and eligibility criteria should be widely implemented and reported for future studies.
- The PEDro scale items may be used to improve the quality of future investigations involving resistance training.

AUTHOR BIOGRAPHY

Hubert MAKARUK Employment

Assistant Professor at Józef Pilsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland Degree

PhD

Research interests

plyometrics, strength and conditioning, athletic performance, motor learning **E-mail:** hubert.makaruk@awf.edu.pl

Marcin STARZAK Employment

Assistant at Józef Pilsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland Degree PhD

Research interests

sports science, strength and conditioning, athletic performance

E-mail: marcin.starzak@awf.edu.pl Maciej PŁASZEWSKI

Employment

Assistant Professor at Józef Pilsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health, Poland

Degree PhD

Research interests

Evidence-Based practice, physiotherapy, systematic reviews E-mail: maciej.plaszewski@awf.edu.pl

Jason B. WINCHESTER

Employment

Associate Professor: Division of Health Sciences & Human Performance, Concordia University Chicago, USA Degree

PhD

Research interests human performance, injury prevention, strength and conditioning E-mail: jwinchester@outlook.com

Hubert Makaruk 2 Akademicka, 21-500 Biała Podlaska, Poland

320

Supplements

Table S1. Overview of the studies included in the review

Study	Sport, sports expertise	Participants, gen- der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study design)		
Abade et al. (2019)	Handball, semi-profes- sional players (sport experience = $12.2 \pm 1.8 \text{ y}$)	M=20, 25 y	Compound strength train- ing, complex strength training, 12 wks	10-m and 20-m linear sprint (BS)		
Alcarez et al. (2014)	Track and field (sprinters, long jumpers, decathletes), national level athletes	F=8, M=14, 21 y	Sled towing training, con- trol, 4 wks	50-m sprint (BS)		
Ali et al. (2019)	Soccer, university players (sport experience > 4 y)	M=36, 21 y	Complex training, contrast training, control, 6 wks	20-m sprint (BS)		
Aloui et al. (2019)	Handball, national cadet and junior team (sport ex- perience = $7.0 \pm 1.1 \text{ y}$)	M=30, 19 y	Elastic band training, con- trol, 8 wks	5-m and 30-m sprint, 1RM half back squat (BS)		
Alvarez et al. (2012)	Golfers, athletes (sport experience = 10.2 ± 4.5 and 9.7 ± 6.1 y)	M=10, 24 y	Strength training (maxi- mal, explosive, and spe- cific exercises), control, 18 wks	1RM squat, 1RM bench press, 1RM seated row machine, 1RM triceps push-down, 1RM seated calf extension, 1RM seated barbell military (BS)		
Anderson et al. (2008)	Basketball, wrestling, hockey, athletes (sport ex- perience = 3.6 and 3.7 y)	F=22, M=22, 20 y	Elastic and free weight re- sistance training, free weight resistance training alone, 7 wks	1RM bench press, 1RM back squat (BS)		
Appleby et al. (2019)	Rugby, union academy players	M=33, 22 y, range: 18-29 y	Bilateral resistance train- ing, unilateral resistance training, control, 18 wks	1RM squat, 1RM step-up (BS)		
Arazi and Asadi (2011)	Basketball, semi-profes- sional athletes (sport expe- rience = 4.8 ± 2.5 y)	M=18, 19 y	Aquatic plyometric train- ing, land plyometric train- ing, control, 8 wks	36.5-m and 60-m sprints, 1RM leg press (BS)		
Arazi et al. (2018)	Volleyball, players (sport experience = 5.2 ± 1.7 y)	F=30, 19 y	Resistance training (clus- ter sets), resistance train- ing (traditional set), con- trol, 8 wks	20-m sprint, 1RM back squat, 1RM bench press, 1RM military press, 1RM deadlift (BS)		
Arede et al. (2021)	Basketball, group form U18 to senior amateur level athletes	M=20, 20 y, range: 15-34 y	Strength training, control, 10 wks	10-m and 25-m sprint (BS)		
Ataee et al. (2014)	Kung-Fu, wrestling, trained athletes	M=24, 21 y	Accommodation re- sistance training, constant resistance training, 4 wks	1 RM squat, 1RM bench press (BS)		
Ayers et al. (2016)	Volleyball, softball, NCAA Division I athletes	F=23, 20 y, range: 18-22 y	Hang clean training, hang snatch training, 6 wks	40-yard sprint, 1RM back squat (BS)		
Bachero-Mena et al. (2021)	Track and field (800-m runners), national and in- ternational levels athletes	M=13, 22 y, range: 17-35 y	High-speed resistance training, circuit training, 25 wks	20-m and 200-m sprints, 800-m run (BS)		
Balsalobre-Fer- nández et al. (2013)	Track and field (400-meter hurdles), highly competi- tive athletes	M=7, 22 y	Power training, 10 wks	30-m sprint, 1RM half squat (WS)		
Bartolomei et al. (2014)	Track and field (throwing events), rugby, American football, experi- enced athletes	M=24, 24 y	Block periodization train- ing, traditional periodiza- tion training, 15 wks	1RM isometric half-squat, 1RM bench press (BS)		
Bartolomei et al. (2016)	Track and field (throwing events), rugby, American football, wrestling, experi- enced athletes	M=18, 25 y	Block periodization train- ing, weekly undulating training, 15 wks	1RM isometric half-squat, 1RM bench press (BS)		
Beattie et al. (2017)	Track and field (1,500– 10,000 m runners), com- petitive collegiate and na- tional-level athletes	M=20, 28 y	Strength training, control, 40 wks	1RM back squat (BS)		

Table SI. Continue	ed			
Study	Sport, sports expertise	Participants, gen- der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study design)
Ben Brahim et al. (2021)	Soccer, elite players (Tuni- sian national U- 19 team members)	M=34, 19 y	Combined muscular strength and resisted sprint training, control, 6 wks	5-m and 20-m sprints, 1RM half-back squat (BS)
Berryman et al. (2010)	Track and field (endurance runners), from moderately to well-trained athletes	M=35, 30 y	Plyometric training, dy- namic weight training, control, 8 wks	3,000-m run (BS)
Berryman et al. (2021)	Track and field (endurance runners), well-trained ath- letes	M=8, 33 y	Plyometric training, dy- namic weight training, 8 wks	3,000-m run (BS)
Blazevich and Jenkins (2002)	Track and field (sprint run- ners), elite athletes (nation- ally ranked) (sport experi- ence > 5 y)	M=9, 19 y	High-velocity resistance training, low-velocity re- sistance training, 7 wks	20-m sprint, 1-RM squat (BS)
Brito et al. (2014)	Soccer, local soccer club players	M=57, 20 y	Resistance training, plyometric training, com- plex training, control, 9 wks	5-m and 20-m sprints, 1- RM squat (BS)
Burnham et al. (2010)	Volleyball and basketball, collegiate athletes (NCAA Division II)	F=19, 20 y	Traditional training, chain training, 16 sessions	1 RM bench press (BS)
Campos- Vazquez et al. (2015)	Soccer, youth team that competes in the top Spanish U-19 category (sport experi- ence > 5 y)	M=21, 18 y, range: 16-19 y	Squat training, take-off training, 8 wks	RSA (BS)
Chelly et al. (2010)	Soccer, regional team (sport experience = 7.2 ± 1.2 y)	M=21, 19 y	Plyometric training, con- trol, 8 wks	40-m sprint (BS)
Cherif et al. (2016)	Handball, elite players re- cruited from a team ranked among the better of the Tu- nisian first league (sport ex- perience > 12 y)	M=22, 22 y	Strength training, control, 12 wks	1RM half-back squat, 1RM bench press, 1RM developed neck, 1RM print, 1RM pull-over (BS)
Cherni et al. (2021)	Basketball, elite players (sport experience = 10.8 ± 3.2 y and 10.8 ± 4.8 y)	F=27, 21 y	Plyometric training, con- trol, 8 wks	10-m, 20-m, and 30-m sprints (BS)
Coratella et al. (2019)	Soccer, fourth-division (Serie-D) (sport experience > 5 y)	M=40, 23 y	Negative work-based training, weight training in the change of direction, 8 wks	10 m and 30-m sprints, 1RM squat (BS)
Crewther et al. (2016)	Rugby, premier club players in New Zealand	M=24, 30 y	Full-body training, split- body training, 4 wks	1RM back squat, 1RM bench press (WS)
Cross et al. (2018)	Soccer, rugby, club-level athletes	F=12, M=24, 27 y	Resisted sprint training (optimal load), resisted sprint training (high load), 12 weeks	5-m, 10-m, and 30-m sprints (BS)
Cummings et al. (2018)	Golf, Mississippi State Uni- versity team players	M=10, 21 y, range: 18-22 y	Fat grip training, control, 8 wks	1RM deadlift (BS)
Dolezal et al. (2016)	Track and field (throwers, jumpers, sprinters), Divi- sion III	F=9, M=11, 20 y	Combining velocity-based training with eccentric fo- cus, velocity-based train- ing, 12 wks	1RM squat, 1RM bench press (BS)
Douglas et al. (2018)	Rugby, trained in academy	M=14, 19 y	Resistance training incor- porating accentuated ec- centric loading, traditional resistance training, 8 wks	10-m, 20-m and 30-m sprints, 1RM back squat (BS)
El-Ashker et al. (2019)	Track and field (long jump- ers), regional level athletes (sport experience = 4.9 ± 2.1 y and 4.4 ± 1.9 y)	M=28, 19 y	Plyometric training, con- trol, 8 wks	30 m sprint (flying start) (BS)
Enoksen et al. (2013)	Soccer, well-trained elite junior players	M=24, 19 y	Supervised strength train- ing, unsupervised strength training, control, 10 wks	10-m and 40-m sprints, 1RM leg press (BS)

Table S1. Continued..

Participants, gen-Type and duration of in-Test used to measure Study Sport, sports expertise der (n), mean age tervention outcomes (study design) (in years) Rugby, amateur union Resisted sled training (2 **Escobar-Alvarez** players (mean sport experi-F=31, 24 y 5-m and 20-m sprints (BS) et al. (2020) groups), control, 8 wks ence = 8.0 ± 1.7 y) Football, high-level ama-Faude et al. Strength training, control, 10-m and 30-m sprints, teur players (sport experi-M=16, 22 y (2013)1RM half squat (BS) 7 wks ence > 10 y) Linear undulating periodized resistance training, Franchini et al. M=13, age 1RM bench press, 1RM not Judo, athletes daily undulating periodsquat, 1RM row (BS) (2015)provided ized resistance training, 8 wks 10-m sprint, 1RM half-Optimal load training, Freitas Basketball, semi-profeset al. M=18, 21 y modified complex trainsquat, 1RM bench press, (2019)sional players ing, 6 wks 1RM hip thrust (BS) Elastic bands training. Ghigiarelli et al. Football, Division 1-AA 1RM bench press (BS) M=36, 20 y weighted chain training, (2009)players control, 7 wks Optimum power load Gil-Cabrera Cycling, professional ath-1RM squat, 1RM hip et M=22, 19 y training, traditional real. (2021) letes thrust, 1RM lunge (BS) sistance training, 8 wks Volleyball, players partici-Plyometric skill based Gjinovci et al. pating at the highest com-F=41, 22 y training, volleyball skill 20-m sprint (BS) (2017)petitive level in Kosovo based training, 12 wks (i.e., first division players) Moderate load sled train-Grazioli et al. Soccer, professional play-10-m and 20-m sprints M=17, 26 y ing, heavy load sled train-(2020)(BS) ers ing, 11 wks Track and field, regional Explosive strength train-Guglielmo et al. and national level middle-M=16, 27 y ing, heavy weight strength 1RM leg press (BS) (2009)and long-distance runners training, 4 wks (3000 m to half-marathon) Hansen Traditional strength trainet al. Rugby, elite union players M=18, 27 y 1RM back squat (BS) (2011)ing, cluster training, 8 wks Machine squat jump training (80% 1RM), machine 10-m and 30-m sprints, Harris et al. Rugby, well-trained league M=18, 22 y squat jump training (indi-1RM machine hack-squat (2008)players vidual load for (BS) peak power), 7 wks Resisted sprint training, Harrison Rugby, professional and 30-m sprint (BS) M=15, 21 y control, 6 wks Bourke (2009) semiprofessional players Handball, elite players (top Heavy resistance training, Hermassi et al. National Handball League) 1RM bench press, 1RM M=26, 20 y moderate resistance trainpull-over (BS) (2010)(sport experience = $8.2 \pm$ ing, 10 wks 0.6 y) Handball, elite, national 30-m sprint, 1RM back Hermassi et al. level players (sport experi-Heavy resistance training, M=24, 20 y half squat, 1RM pull-over, ence = 9.1 ± 0.2 y and 8.7(2011) control, 8 wks 1RM bench press (BS) $\pm 0.6 \, y$) Handball, team that played Hermassi et al. at the highest (Tunisia) na-Plyometric training, con-M=24, 20 y RSA (BS) trol, 8 wks (2014)tional level (sport experience = $12.4 \pm 2.1 \text{ y}$) Handball, elite players (top Resistance training, regu-Hermassi et al. national handball league) 1RM bench press, 1RM lar throwing training, con-M=34, 18 y (sport experience = $7.5 \pm$ (2015)pullover (BS) trol, 8 wks 0.5 y) Handball, national-level Hermassi et al. Tunisian youth team (U19) Strength training, control, M=22, 19 y 1RM half squat, RSA (BS) (2017)(sport experience = $9.1 \pm$ 10 wks 0.3 y)

Table S1. Continued...

Table S1. Contin	uea			
Study	Sport, sports expertise	Participants, gen- der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study de- sign)
Hermassi et al. (2019a)	Handball, first and second league handball players (sport experience = 8.2 ± 0.8 y)	M=22, 21 y	Combined resistance train- ing, resistance training, 10 wks	RSA, 1RM bench press, 1RM back half-squat (BS)
Hermassi et al. (2019b)	Handball, elite players (first national league)	M=20, 21 y	Weightlifting training, con- trol, 12 wks	30-m sprint, 1RM bench press, 1RM snatch, 1RM clean and jerk, 1RM back half-squat (BS)
Hermassi et al. (2019c)	Handball, elite players (first national league) (sport experience = 9.2 ± 0.7 y)	M=22, 20 y	Weightlifting training, con- trol, 12 wks	30-m sprint, 1RM bench press, 1RM snatch, 1RM clean and jerk, 1RM back half-squat (BS)
Hermassi et al. (2020)	Handball, elite players (sport experience = $7.2 \pm 1.1 \text{ y}$)	M=19, 19 y	Circuit strength training, control, 12 wks	15-m and 30-m sprints, 1RM bench press, 1RM pull-over, 1RM half- squat (BS)
Hertzog et al. (2020)	Soccer, players playing with the reserve (U21) and U19 teams of a French first divi- sion club (sport experience > 5 y)	M=28, 18 y	Upper-body resistance train- ing, control, 30 wks	1RM bench press, 1RM bench pull (BS)
Hoff and Al- masbakk (1995)	Handball, Norwegian second division	F=16, 20 y, range: 17-26 y	Strength training, control, 10 wks	1RM bench press (BS)
Hoff et al. (2002)	Cross-country skiing, well- trained skiers	M=19, 20 y	Strength training, control, 8 wks	1RM at the modified ca- ble pulley apparatus (BS)
Hoffman et al. (1990)	American football, NCAA di- vision IAA team	M=61, 19 y	Resistance training (four groups: 3, 4, 5, 6 days per week), 10 wks	40-yard sprint, 2-mile run, 1RM squat, 1RM bench press (BS)
Hoffman et al. (1991a)	Basketball, NCAA division I	M=9, 19 y	Resistance training, 25 wks	27-m sprint, 1.5 mile run, 1RM squat, 1RM bench press (WS)
Hoffman et al. (1991b)	Basketball, NCAA division I	M=22, 19 y	Resistance training (three groups), 25 wks	27-m sprint, 1.5 mile run, 1RM squat, 1RM bench press (BS)
Hoffman et al. (2004)	American football, NCAA di- vision III	M=20, 19 y	Olympic lifting training, power lifting training, 15 wks	40-yard sprint, 1RM squat, 1RM bench press (BS)
Hoffman et al. (2005)	American football, NCAA di- vision III	М=47, 20 у	Loaded jump squat training, unloaded jump squat train- ing, control, 5 wks	40-yard sprint, 1RM squat, 1RM power clean (BS)
Hoffman et al. (2009)	American football, NCAA di- vision III	M=51, 20 y	Non-periodized training, tra- ditional periodized linear training, nonlinear period- ized training, 15 wks	1RM squat, 1RM bench press (BS)
Hong-Sun et al. (2009)	Swimming, national team ath- letes	M=10, 19 y	Periodized strength training, 40 wks	50-m sprint, 100-m run, 1RM squat, 1RM bench press, 1RM power clean, 1RM deadlift (WS)
Horwath et al. (2019)	Ice hockey, Swedish and Norwegian junior hockey leagues	M=22, 18 y	Isokinetic resistance train- ing, eccentric overload train- ing, traditional resistance training, 8 wks	30-m sprint, 1RM back squat (BS)
Iacono et al. (2017)	Handball, elite players (sport experience > 8 y)	M=18, 23 y	Vertical drop jump training, horizontal drop jump train- ing, 10 wks	10-m and 25-m sprints (BS)
Impellizzeri et al. (2008)	Soccer, amateur players	M=44, 25 y	Plyometric grass training, plyometric sand training, 4 wks	10-m and 20-m sprints
Iodice et al. (2020)	Futsal, elite players	M=30, 24 y	Slow-speed resistance training with low intensity, traditional resistance train- ing, 8 wks	30-m and 60-m sprint (BS)

Table S1. Continued ...

Table S1. Continued ...

Study	Sport, sports expertise	Participants, gen- der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study de- sign)	
Izquierdo- Gabarren et al. (2010)	Rowing, trained athletes (sport experience = $12.1 \pm 5 \text{ y}$)	M=43, 26 y	Resistance training (four ex- ercises to failure), resistance training (four exercises not to failure), resistance train- ing (two exercises not to failure), control, 8 wks	1RM prone bench pull (BS)	
Jones et al. (1999)	Football, collegiate NCAA Division 1AA players	M=30, 20 y	Maximum concentric accel- eration training, control (tra- ditional upper-body train- ing), 14 wks	1RM bench press (BS)	
Joy et al. (2016)	Basketball, National Colle- giate Athletic Association division II players	M=14, age not provided	Variable resistance training, control, 5 wks	40-y sprint, 1RM back squat, 1RM bench press, 1RM deadlift (BS)	
Kale (2016)	Handball, Super League Team players (sport experience > 4 y)	F=19, 20 y	Plyometric training, control, 6 wks	10-m, 20-m, and 30-m sprint (BS)	
Katushabe and Kramer (2020)	Soccer, collegiate players (sport experience > 1 y)	M=17, 20 y	Power-band resistance training, conventional re- sistance training, 6 wks	40-m sprint, 1RM squat (BS)	
Kostikiadis et al. (2018)	Combat sport, profes- sional, national level Mixed Martial Arts experi- enced fighters	M=17, 27 y	"Sport specific" strength training, "regular" strength training, 4 wks	1RM back squat, 1RM bench press, 1RM dead- lift (BS)	
Kraemer et al. (2003)	Tennis, collegiate players (sport experience = 8.1 ± 3.5 y)	F=30, 19 y	Resistance training (nonlin- ear periodized), resistance training (non-periodized), control, 9-month	20-m sprint, 1RM leg press and bench press (BS)	
Lago-Fuentes et al. (2018)	Futsal, professional play- ers, Spanish First Division Professional Futsal League	F=14, 24 y	Core strength training (sta- ble surface), core strength training (unstable surface), 6 wks	10-m sprint (BS)	
Lahti et al. (2020)	Soccer, professional play- ers, premier division in Finland	M=32, 24 y	Resisted sled training (60% velocity decrement from maximal velocity), resisted sled training (50% velocity decrement from maximal velocity), control, 9 wks	30-m sprint (BS)	
Li et al. (2019)	Track and field (long dis- tance runners), collegiate well-trained athletes (sport experience > 4 y)	M=28, 21 y	Complex training with en- durance training, heavy re- sistance training with endur- ance training, control (strength-endurance training and endurance training), 8 wks	50-m sprint and 5-km time trial, 1RM squat (BS)	
Losnegard et al. (2011)	Cross country skiing, com- petitive athletes	F=8, M=11, 21 y	Strength training, control, 12 wks	1RM half-squat, 1RM seated pull-down (BS)	
Loturco et al. (2013)	Soccer, professional play- ers (sport experience > 10 y)	M=32, 19 y	Strength/power training (ve- locity-based), strength/power training (in- tensity-based), 6 wks	10-m and 30-m sprint, 1RM squat (BS)	
Loturco et al. (2015)	Soccer, elite players (sport experience > 6 y)	M=24, 18 y	Resistance training (in- creased bar velocity group), resistance training (reduced bar velocity group), 6 wks	20-m sprint, 1RM leg- press (BS)	
Loturco et al. (2017)	Soccer, professional play- ers	M=18, 22 y	Resistance training (opti- mum power load + resisted sprints), resistance training (optimum power load + ver- tical/horizontal plyometrics), 5 wks	30-m sprint (BS)	

Table S1. Continued	1				
Study	Sport, sports expertise	Participants, gen- der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study design)	
Manouras et al. (2016)	Soccer, players (sport experience > 3 y)	M=30, 20 y	Horizontal plyometric training, vertical plyome- tric training, control, 8 wks	10-m and 30-m sprint (BS)	
Maroto- Izquierdo et al. (2017)	Handball, professional players, Spanish first division handball league (ASOBAL)	M=29, 22 y	Resistance training (fly- wheel), control (tradi- tional resistance training with weight-stack ma- chine), 6 wks	20-m sprint, 1RM leg- press (BS)	
Marques et al. (2006)	Handball, high level pro- fessional players (sport ex- perience = 9.8 ± 1.9 y)	M=16, 23 y, range: 18–29 y	Resistance training, 12 wks	30-m sprint, 1RM bench press (WS)	
Marques et al. (2019)	Futsal, players (sport experience = 5.7 ± 2.8 y)	M=21, 18 y	Resistance training, con- trol, 6 wks	20-m sprint (BS)	
McCurdy et al. (2009)	Baseball, Division II play- ers	M=28, 21 y	Resistance training (chain- loaded bench press), re- sistance training (plate- loaded bench press), 9 wks	1RM bench press (plate- and chain-loaded) (BS)	
McMaster et al. (2014)	Ruby, semi-professional trained players	M=14, 21 y	Complex resistance train- ing (strength + heavy bal- listic), complex resistance training (strength + light ballistic), 2 x 5 wks	30-m sprint, 1RM back squat, 1RM bench press (WS)	
McMorrow et al. (2019)	Soccer, professional play- ers, Irish top division	M=18, 25 y	Resisted sled training, un- resisted sprint training, 6 wks	20-m sprint (BS)	
Mirzak (2015)	Basketball, Ataturk Uni- versity players	M=28, 22 y	Whole body resistance training, control, 12 wks	1RM bench press (BS)	
Mohanta et al. (2019)	Lawn tennis, players (sport experience $> 2 v$)	M=40, 22 y, range: 18-25 y	Plyometric training, cir- cuit training, 8 wks	50-m sprint, 1RM chess press (BS)	
Moore et al. (2005)	Soccer, collegiate athletes (sport experience = 12.5 y)	F=10, M=5, 20 y	Resistance training (Olympic-style lifts), re- sistance training (tradi- tional),12 wks	25-m sprint (BS)	
Morin et al. (2022)	Track and Field (sprinters), trained experienced ath- letes (sport experience = 7.6 ± 2.0 y)	F=9, 22 y; M=13, 22 y	20-m resisted sprints, 12 wks	5-m and 30-m sprint (WS)	
Nonnato et al. (2020)	Soccer, professional play- ers	F=16, 23 y, range: 18-29 y	Plyometric training, con- trol, 12 wks	10-m and 30-m sprint (BS)	
Oberacker et al. (2012)	Soccer, National Colle- giate Athletic Association Division II players	F=19, 19 y	Resistance training (stable surface), resistance train- ing (unstable surface), 5 wks	30-m sprint (WS)	
Oranchuk et al. (2020)	Softball, University play- ers	F=28, 20 y	Resistance training (sport-specific exercises), resistance training (gen- eral-training exercises), 8 wks	1RM chop-test (BS)	
Ozban (2015)	Soccer, University Sports Club female soccer team, Women First League (sport experience > 5 y)	F=20, 19 y	Plyometric training, con- trol, 10 wks	30-m sprint (BS)	
Ozban et al. (2014)	Soccer, University Sports Club female soccer team, Women Sec- ond League (sport experi- ence > 4 y)	F=18, 18 y, range: 15-22 y	Plyometric training, con- trol, 8 wks	20-m sprint (BS)	
Paavolainen et al. (1999)	Cross country runners (ori- enteers), elite athletes (sport experience > 8 y)	M=22, 24 y	Explosive-strength train- ing, control, 9 wks	5-km time trial (BS)	

Table S1. Continued ... Participants, gen-Type and duration of in-Test used to measure Study der (n), mean age Sport, sports expertise tervention outcomes (study design) (in years) Football, professional Complex training (interplayers, Slovakia national mittent load), combined Pacholek and 1RM bench press, 1RM U19 and senior team mem-F=13, 20 y strength training (maximal Zemkova (2020) full squat (WS) bers (sport experience = strength and dynamic $6.3 \pm 1.9 \text{ y})$ method), 9 wks Squat training (velocity Pareja-Blanco et Soccer, professional play-M=20, 24 y loss 15%), squat training 30-m sprint (BS) al. (2017) (velocity loss 30%), 6 wks Lower body resistance training (2 sessions/wk), Lower body resistance 5-m, 10-m, and 15-m Paz-Franco et al. Futsal, professional play-M=35, 24 y training (1 session/wk), (2017)ers sprint (BS) Lower body resistance training (1 session every second week), 6 wks Pearson et al. Weight training, control, 6 Sailors, elite-level M=14, 34 y 1RM bench pull (BS) (2009)wks Maximal strength free-5-m, 10-m, and 15-m Pedersen et al. Football, level F=46, 19 y, range: barbell squat training, consprint, 1RM squat (90° two and three in Norway (2019) 15-26 y trol, 5 wks knee angle) (BS) training Resistance Softball, NCAA Division I (closed-kinetic chain Prokopy et al. F=14, 21 y players, (sport experience exercises). resistance 1RM bench press (BS) (2008)range: 0-5 y) training (open-kinetic chain exercises), 12 wks Ramirez-Middle- and long-distance Plyometric training, con-20-m sprint, 2.4 km run-Campillo et al. runners, highly competi-F=14, M=22, 24 y trol, 6 wks ning endurance (BS) (2014) tive Water polo, elite nationalstrength Ramos-Veliz et High-intensity 1RM bench press, 1RM level athletes (sport experi-M=27, 20 y al. (2014) training, control, 18 wks full squat (BS) ence = 8.5 ± 4.1 y) Resistance training (real Randell et al. Rugby, professional playtime feedback), resistance M=13, 25 y 30-m sprint (BS) (2011)ers (sport experience > 3 y) training (no feedback), 6 wks Resisted sprint training Soccer, amateur experi-(weighted vest), unre-Rey et al. (2017) enced players (sport expe-M=19, 24 y 10-m and 30-m sprint (BS) sisted sprint training, 6 rience = $14.7 \pm 4.1 \text{ y}$) wks Lower limb 1RM shoulder flexion and power athletes F=14, range: 18-Traditional strength train-(i.e., Richard shoulder and sprinter/hurdler, 100 to 800 multidirectional 30 y ing, **Dawson (2009)** abduction m or a jumper, long jump, strength training, 6 wks high jump, triple jump). Soccer, semi-professional Full squat training, full **Rodriguez-Ro-**20-m sprint, 1RM squat Spanish third division M=30, 25 y squat with plyometrics, (estimated) (BS) sell et al. (2017) control, 6 wks players Soccer, professional play-Heavy strength training, Ronnestad et al. 40-m sprint, 1RM halfers, Norwegian Premier M=21, 24 y heavy strength and plyom-(2008)squat (BS) etrics, control, 7 wks League Strength training (1/wk), Ronnestad et al. Soccer, professional playstrength training (1/every 40-m sprint, 1RM half-M=19, 24 y (2011)second wk), 10 wks oversquat (BS) ers all +12 wks experimental Heavy strength training Nordic Combined, well-Ronnestad et al. with usual Nordic com-1RM deep squat, 1RM trained, international ath-M=17, 20 y bined training, control, 12 seated pull-down (BS) (2012)

wks

letes

rable 51. Continue	u	Dautiain anta ann		
Study	Sport, sports expertise	der (n), mean age (in years)	Type and duration of in- tervention	Test used to measure outcomes (study design)
Sabido et al. (2017)	Handball, first National Handball Divi- sion players (sport experi- ence = 10.3 ± 3.4 y)	M=18, 24 y	Eccentric-overload train- ing (flyweel device), con- trol, 7 wks	20-m sprint, 1RM half- squat (BS)
Saez de Villareal et al. (2015)	Water polo, professional athletes, Spanish first division (sport experience = 7.8 ± 3.1 y)	M=30, 23 y	Dryland and in-water spe- cific strength training, in- water specific training, up- per and lower dryland plyometric training, 6 wks	1RM bench press, 1RM full squat (BS)
Sedano et al. (2013)	Endurance runners, well- trained (sport experience > 4 y)	M=18, 24 y	General strength with plyometrics and endur- ance training, endurance strength training, control, 12 wks	5-km time trial, 1RM squat (BS)
Shalfawi et al. (2013)	Soccer, elite well-trained players, second division level in Norway	F=20, 19 y	Strength training, resisted running and repeated sprint training, 10 wks	20-m and 40-m sprint (BS)
Singh et al. (2018)	Field hockey, elite players	F=6, M=11, 23 y	Low-to-high drop jump training, high-to-low drop jump training, 6 wks	10-m and 20-m sprint (BS)
Speirs et al. (2016)	Rugby, academy players	M=18, 18 y	Bilateral strength training, unilateral strength train- ing, 5 wks	10-m and 40-m sprint, 1RM squat (BS)
Spineti et al. (2019)	Soccer, professional play- ers, Brazilian league divi- sion	M=22, 18 y	Traditional strength train- ing, complex contrast training, 8 wks	1RM squat (BS)
Storen et al. (2008)	Endurance runners, well- trained	F=8, M=9, 29 y	Maximal strength training, control, 8 wks	1RM squat (90° knee an- gle) (BS)
Styles et al. (2016)	Soccer, elite professional players	М=17, 18 у	Individualized strength training, 6 wks	5-m, 10-m, and 20-m sprint, 1RM squat (90° knee angle) (WS)
Taher et al. (2021)	Track and field (long jump- ers), professional athletes	M=20, 23 y	Vertical and horizontal plyometric training, con- trol, 8 wks	30-m sprint (BS)
Torres-Torrelo et al. (2017)	Futsal, Spanish third divi- sion players (sport experi- ence > 10 y)	M=36, 24 y	Full squat training, full squat and COD training, control, 6 wks	20-m sprint, RSA (BS)
Torres-Torrelo et al. (2018)	Futsal, Spanish third divi- sion players (sport experi- ence > 10 y)	M=36, 24 y	Full squat training, full squat and COD training, control, 6 wks	20-m sprint, RSA (BS)
Veliz et al. (2014)	Water polo, national level players (sport experience = 8.5 ± 4.1 y)	M=27, 20 y	Strength and power train- ing, control, 16 wks	1RM full squat, 1RM bench press (BS)
Veliz et al. (2015)	Water polo, Spanish first national division players (sport experience = $10.6 \pm 4.1 \text{ y}$)	F=21, 26 y	Strength and power train- ing, control, 16 wks	1RM full squat (BS)
Watkins et al. (2021)	Rugby, semiprofessional players	M=32, 20 y	Horizontal plyometric training, vertical plyome- tric training, control, 6 wks	10-m, 20-m, 30-m sprint (WS)
Zabaloy et al. (2020)	Rugby, highly trained (sport experience > 10 y)	M=33, 22 y, range: 21-24 y	Strength with plyometrics and sprint training, con- trol, 7 wks	5-m, 10-m, 20-m, 30-m sprint, 1RM squat (BS)
Zaferanieh et al. (2021)	Table tennis, elite athletes (sport experience = 5 y)	M=30, 24 y	Power training, ballistic training, control, 8 wks	1RM bench press, 1RM knee extension (BS)

Table S1. Continued ...

Table S2. PEDro rating (Criterion, CR) for the	included	stua	es (n = $(n = 1)$	133).							
Study	CR 1	CR 2	CR3	CR 4	CR 5	CR 6	CR 7	CR 8	CR 9	CR 10	CR 11	Total
Abade et al. (2019)	v	n	n	n	n	n	n	v	n	n	v	3
Alcarez et al. (2013)	y	v	n	V	n	n	n	n	n	v	y	5
Ali of al. (2014)	y	y	n	y	n	n	n	n	n	y	y	5
Allowing at al. (2019)	y	y		y						у	у	5
Alour et al. (2019)	п	у	n	у	n	n	n	у	n	у	У	5
Alvarez et al. (2012)	n	У	n	У	n	n	n	n	n	У	У	4
Anderson et al. (2008)	n	у	n	у	n	n	n	у	n	у	у	5
Appleby et al. (2019)	n	n	n	У	n	n	n	У	n	У	У	4
Arazi and Asadi (2011)	n	у	n	у	n	n	n	n	n	n	у	3
Arazi et al. (2018)	у	у	n	у	n	n	n	у	n	у	у	6
Arede et al. (2021)	n	у	n	у	n	n	n	n	n	у	у	4
Ataee et al. (2014)	n	у	n	У	n	n	n	n	n	n	n	2
Ayers et al. (2016)	n	у	n	n	n	n	n	n	n	у	n	2
Bachero-Mena et al. (2019)	n	n	n	у	n	n	n	n	n	у	у	3
Balsalobre-Fernández et al. (2013)	n	n	n	у	n	n	n	n	n	n	у	2
Bartolomei et al. (2014)	n	у	n	у	n	n	n	n	n	у	У	4
Bartolomei et al. (2016)	n	У	n	У	n	n	n	n	n	У	У	4
Beattie et al. (2017)	n	n	n	y	n	n	n	n	n	У	У	3
Ben Brahim et al. (2021)	n	n	n	n	n	n	n	n	n	v	v	2
Berryman et al. (2010)	n	v	n	v	n	n	n	n	n	v	v	4
Berryman et al. (2021)	n	n	n	v	n	n	n	v	n	n	v	3
Blazevich and Jenkins (2002)	n	n	n	n	n	n	n	v	n	v	v	3
Brito et al. (2014)	n	V	n	v	n	n	n	v	n	v	v	5
Burnham et al. (2010)	V	y	n	y V	n	n	n	y V	n	y	y	6
Campos-Vazquez et al. (2015)	n	y	n	y	n	n	n	n	n	y	y	4
Chelly et al. (2010)	n	y V	n	y V	n	n	n	V	n	y V	y V	5
Charif et al. (2016)	n	n	n	n	n	n	n	n	n	y	y	2
$\frac{(2010)}{(2021)}$	v	n	n	V	n	n	n	v	n	y	y	5
Coratella et al. (2010)	y	N N	n	y n	n	n	n	y n	n	y	y	1
Crowther et al. (2015)	y n	y	n	II V	n	n	n	II V	n	y	y	- -
Cross et al. (2019)	11 n	y	n	y	11 12	11 n	11 n	y	n	y	y	5
Cummings at al. (2018)	11	y	11 n	y	11 n	11 n	11 n	y	- II - N	y n	y	5
Delevel et al. (2016)	y	y		y				y		11	y	3
Douglas et al. (2010)	11	y						y		у	y	4
Douglas et al. (2018)	n	у	n	n	n	n	n	у	n	у	у	4
En-Ashker et al. (2019)	11	<u>n</u>	n	у	n	n	n	у	n	у	у	4
Enoksen et al. (2013)	n	n	n	n	n	n	n	n	n	n	У	1
Escobar-Alvarez et al. (2020)	n	n	n	у	n	n	n	n	n	У	У	2
Faude et al. (2013)	n	У	n	n	n	n	n	n	n	У	У	5
Franchini et al. (2015)	У	У	n	У	n	n	n	n	n	У	У	5
Freitas et al. (2019)	n	у	n	у	n	n	n	n	n	У	у	4
Ghigiarelli et al. (2009)	n	у	n	у	n	n	n	n	n	у	у	4
Gil-Cabrera et al. (2018)	n	У	n	n	n	n	n	У	n	У	У	4
Gjinovci et al. (2017)	n	у	n	n	n	n	n	n	n	у	у	3
Grazioli et al. (2020)	n	У	У	У	n	n	У	n	n	У	У	6
Guglielmo et al. (2009)	n	У	n	у	n	n	n	У	n	у	У	5
Hansen et al. (2011)	У	У	n	У	n	n	n	n	n	У	У	5
Hariss et al. (2008)	n	У	n	У	n	n	n	n	n	У	У	4
Harrison and Bourke (2009)	n	У	n	n	n	n	n	n	n	У	n	2
Hermassi et al. (2010)	n	У	n	У	n	n	n	n	n	У	У	4
Hermassi et al. (2011)	n	у	n	у	n	n	n	n	n	n	у	3
Hermassi et al. (2014)	n	n	n	у	n	n	n	n	n	у	у	3
Hermassi et al. (2015)	n	у	n	у	n	n	n	n	n	у	У	4
Hermassi et al. (2017)	n	n	n	у	n	n	n	У	n	У	У	4
Hermassi et al. (2019a)	n	n	n	n	n	n	n	У	n	У	У	3
Hermassi et al. (2019b)	n	у	n	у	n	n	n	n	n	у	у	4
Hermassi et al. (2019c)	n	n	n	n	n	n	n	У	n	У	У	3
Hermassi et al. (2020)	n	у	n	у	n	n	n	n	n	у	у	4
Hertzog et al. (2020)	n	n	n	у	n	n	n	n	n	у	у	3
Hoff and Almasbakk (1995)	n	у	n	у	n	n	n	n	n	у	у	4
Hoff et al. (2002)	n	у	n	у	n	n	n	у	n	У	У	5
Hoffman et al. (1990)	n	n	n	n	n	n	n	n	n	n	у	1
Hoffman et al. (1991a)	n	n	n	n	n	n	n	n	n	n	у	1
Hoffman et al. (1991b)	n	n	n	У	n	n	n	n	n	n	у	2
Hoffman et al. (2004)	n	n	n	У	n	n	n	У	n	У	У	4

у

Table S2. PEDro rating (Criterion, CR) for the included studies (n = 133).

Table S2. Continued												
Study	CR 1	CR 2	CR3	CR 4	CR 5	CR 6	CR 7	CR 8	CR 9	CR 10	CR 11	Total
Hoffman et al. (2005)	n	v	n	v	n	n	n	n	n	v	v	4
Hoffman et al. (2009)	n	v	n	v	n	n	n	n	n	v	V	4
Hong-Sun et al. (2009)	n	n	n	y V	n	n	n	n	n	n	y V	2
Horwath et al. (2019)	n	V	n	y V	n	n	n	V	n	v	y V	5
Iacono et al. (2017)	v	y	n	y n	n	n	n	y n	n	y	y	4
Impellizzeri et al. (2017)	n	y	n	n	n	n	n	n	n	y	y	3
Indice et al. (2020)	n	y V	n	N N	n	n	n	n	n	y V	y V	1
Izquiarda Cabarran at al. (2010)	n	y	n	y	n	11 n	11 n	n	n	y	y	
Lones et al. (1990)	11 n	y	11 12	y	11 n	11 n	11 n	n	11 n	y n	y	
Jones et al. (1999)	11 n	y n	n	y	n	11 n	11 n	11 n	n	11 n	y n	1
Joy et al. (2010) Kala (2016)	11 n	11 n	11 12	y	11 n	11 n	11 n	n	11 n	11 n	II V	2
Katushaha and Kramor (2020)	II V	11	n	y	n	11 n	11 n	11 n	n	11	y	5
Katushabe and Kramer (2020)	y	y n	11 n	y	11 12	11 n	11 n	11 n	11 12	y	y	1
Kustikiauls et al. (2018)	y	11	11 12	y	11 12	11 n	11 n	11	11 n	y	y	
Kraemer et al. (2005)	II V	y	11 n	y	11 n	11 n	11 n	y	<u> </u>	y	y	5
Lago-Fuentes et al. (2018)	y	y	n	y	n	n	n	y	n	y	y	0
List al. (2010)	y	n	n	 	n	n	n	y	<u>n</u>	y	у	4
Lifet al. (2019)	n	n	n	y	n	n	n	y	n	y	y	4
Losnegard et al. (2011)	y	n	n	y	n	n	n	<u>n</u>	<u>n</u>	y	у	4
Loturco et al. (2015)	n	у	n	y	n	n	n	n	n	y	y	4
Lotureo et al. (2015)		y		y	11 12	11		n		y	y	4
Loturco et al. (2017)	n	у	n	y	n	n	n	n	n	y	y	4
Manouras et al. (2010) Manata Izquianda et al. (2017)	n	у	n	y	n	n	n	<u>n</u>	<u>n</u>	y	у	4
Maroto-Izquierdo et al. (2017)	y	y	n	y	n	n	n	n	n	y	y	2
Marques et al. (2000)	n	n n	n	n V	n	n 	n n	y	n n	n V	y	2
Macundy et al. (2019)	11 n	11 n	11 n	y n	11 n	11 n	11 n	11 n	11 n	y	y	2
McCurdy et al. (2009)		11 n	11 n	11 n	11 n	11 n	11 n	11 n	<u> </u>	y	y	2
McMaster et al. (2014)	11 n	11	11 n	11	11 n	11 n	11 n	11 n	11 n	y	y	4
Michoffow et al. (2019)		y n	11 n	y	11 n	11 n	11 n	11 n	<u> </u>	y	y	2
MilrZak (2015) Mohanta et al. (2010)	II V	11	11 n	y	11 n	11 n	11 n	11 n	11 n	y	y	5
Monanta et al. (2019)	y	y n	11 n	y	11 n	11 n	11 n	11 n	<u> </u>	y	y	2
Moore et al. (2005)	11 n	11 n	11 n	y	11 n	11 n	11 n	11 n	11 n	y	y	2
Nonnete et al. (2022)		11	11 n	y n	11 n	11 n	11 n	11	11 17	11	y	5
Oboroakor et al. (2012)	11 n	y	11 n	11	11 n	11 n	11 n	y	y	y	y	2
Openackel et al. (2012)	n	11 17	11 n	y	11 n	11 n	11 n	11	11 n	y	y	2
Oranchuk et al. (2020)	11	y	11 n	11	11 n	11 n	11 n	y	11 n	11	y	5
$\begin{array}{c} \textbf{Ozban} (2013) \\ \textbf{Ozban} \text{ at al} (2014) \\ \end{array}$	y	11 17	11 n	y	11 n	11 n	11 n	y	11 n	y	y	5
Paevolainon et al. (1990)	11 n	y n	n	y	n	11 n	11 n	y n	n	y	y	3
Pacholok and Zomkova (2020)	11 n	11 n	11 12	y n	11 n	11 n	11 n	n	11 12	y	y	2
Pareia-Rianco et al. (2017)	n	II V	n	n	n	n	n	n	n	y	y	3
$\begin{array}{c} \text{Franco et al.} (2017) \\ \text{Pag Franco et al.} (2017) \\ \end{array}$	11 n	y	II V	II V	11 n	11 n	11 n	II V	11 12	y	y	6
$\begin{array}{c} 1 \text{ az-rranco ct al. (2017)} \\ \hline Pearson et al. (2009) \end{array}$	n	y	n	y	n	n	n	y V	n	y	y V	5
Poderson et al. (2007)	V	y V	n	y V	n	n	n	y n	n	y V	y V	5
Prokony et al. (2019)	n	y	n	n	n	n	n	v	n	y	y V	4
Ramirez-Campillo et al. (2014)	v	y V	n	v	n	n	n	y V	n	y V	y V	6
Ramos-Veliz et al. (2014)	n	y	n	n	n	n	n	n	n	y	y V	3
Randell et al. (2014)	n	y V	n	v	n	n	n	n	n	y V	y V	4
Rev et al. (2017)	n	y	n	y	n	n	n	v	n	y	y	5
Richard and Dawson (2009)	v	y V	n	y V	n	n	v	y	v	y V	y	8
Rodriguez-Rosell et al. (2017)	n	y	n	n	n	n	n	n	n	y	y	3
Ronnestad et al. (2008)	n	y	n	v	n	n	n	n	n	y	y	4
Ronnestad et al. (2000)	n	y	n	y n	n	n	n	n	n	n	y	2
Ronnestad et al. (2011)	n	y n	n	V	n	n	n	N N	n	N N	y V	4
Sabido et al. (2017)	n	n	n	y n	n	n	n	y	n	y	y	3
Saez de Villareal et al. (2015)	v	v	n	n	n	n	n	y n	n	y	y	4
Sadano et al. (2013)	y	y	n	II V	n	n	n	II V	n	y	y	6
Shalfawi et al. (2013)	y n	y	n	y p	n	n	n	y p	n	y	y	3
Singh et al. (2018)	n	y V	n	n	n	n	n	n	n	y V	y V	3
Sneirs et al. (2016)	v	y	n	V	n	n	n	n	n	y	y	5
Spinsti et al. (2010)	y	y	n	y n	n	n	n	V	n	y	y n	4
Splitter et al. (2017) Storen et al. (2018)	n	y	n	v	n	n	n	y	n	y	v	5
Styles et al. (2006)	v	y n	n	y p	n	n	n	y n	n	y n	y V	2
5 11 1 5 CL AL 12 VIV	• •		1 11		1 11	1 11	1 11	1 11	1 11	1 11	• •	. 4

Table S2. Continued ...

Study	CR 1	CR 2	CR3	CR 4	CR 5	CR 6	CR 7	CR 8	CR 9	CR 10	CR 11	Total
Taher et al. (2021)	n	n	n	у	n	n	n	n	n	у	у	3
Torres-Torrelo et al. (2017)	n	у	n	у	n	n	n	у	n	у	у	5
Torres-Torrelo et al. (2018)	n	у	n	у	n	n	n	у	n	у	у	5
Veliz et al. (2014)	n	у	n	n	n	n	n	у	n	у	у	4
Veliz et al. (2015)	n	у	n	n	n	n	n	у	n	у	у	4
Watkins et al. (2021)	n	у	n	у	n	n	n	у	n	у	у	5
Zabaloy et al. (2020)	у	n	n	n	n	n	n	у	n	у	у	4
Zaferanieh et al. (2021)	n	у	n	n	n	n	n	n	n	у	у	3