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Abstract 
Dynamic stretching for more than 90 seconds is useful for im-
proving muscle strength, although dynamic stretching for 30 sec-
onds or less is commonly used in sports settings. The effects of 
dynamic stretching are influenced by the speed and amplitude of 
stretching, but no study examined these factors for 30 seconds of 
dynamic stretching. Therefore, the purpose of the present study 
was to examine the effects of speed (fast- or slow-speed) and am-
plitude (normal- or wide amplitude) of dynamic stretching for 30 
seconds on the strength (peak torque during maximum isokinetic 
concentric contraction) and flexibility (range of motion, passive 
torque at maximum knee extension angle, and muscle-tendon unit 
stiffness) of the hamstrings. The passive torque and muscle-ten-
don unit stiffness reflect stretching tolerance and viscoelastic 
properties of the hamstrings, respectively. Fifteen healthy partic-
ipants performed 4 types of 30 seconds of dynamic stretching. 
The muscle strength and flexibility were measured before and im-
mediately after the dynamic stretching. The range of motion did 
not change after dynamic stretching at low speed and normal am-
plitude (p = 0.12, d = 0.59, 103.3%), but it was increased by other 
interventions (p < 0.01, d = 0.90 - 1.25, 104.5 - 110.1%). In all 
interventions, the passive torque increased (main effect for time, 
p < 0.01, d = 0.51 – 0.74, 111.0 – 126.9%), and muscle-tendon 
unit stiffness did not change. The muscle strength increased only 
after dynamic stretching at fast speed with normal amplitude (p < 
0.01, d = 0.79, 107.1%). The results of the present study indicated 
that 30 seconds of dynamic stretching at fast speed and with nor-
mal amplitude can be beneficial for the measured parameters. 
 
Key words: Range of motion, peak torque, passive torque, stiff-
ness, warm-up routine, short duration. 

 
 
Introduction 
 
Dynamic stretching is part of a warm-up program before 
sports competitions to improve muscle performance and 
flexibility and prevent injuries (Takeuchi et al., 2019; 
Judge et al., 2020). Dynamic stretching is performed by 
contracting antagonist muscles at a controlled tempo 
within the range of motion (ROM) of the joint (Bandy et 
al., 1998; Jaggers et al., 2008; Samukawa et al., 2011; 
Matsuo et al., 2019; Iwata et al., 2019).  

The effect of dynamic stretching on muscle strength 
is influenced by the duration of stretching (Behm and 
Chaouachi, 2011). It was demonstrated that dynamic 
stretching for a longer duration (more than 90 seconds)     

increased several performances to a great extent (muscle 
strength, power, jump, etc.) compared to dynamic stretch-
ing for a shorter duration (less than 90 seconds) (Behm and 
Chaouachi, 2011). However, in a sports setting, a recent 
survey study reported that dynamic stretching for 30 sec-
onds or less was commonly used as a part of the warm-up 
routine to improve muscle performance (Takeuchi et al., 
2019). For many athletes, the duration of sports practice is 
very limited. Therefore, it is necessary to develop a dy-
namic stretching method that can effectively improve mus-
cle strength within 30 seconds.  

Some previous studies showed significant improve-
ment in muscle performance after a short duration of dy-
namic stretching (Yamaguchi and Ishii, 2005; Yamaguchi 
et al., 2007; Fletcher, 2010; Behm et al., 2011). However, 
these previous studies performed dynamic stretching on 
multiple muscles (total of more than 90 seconds of stretch-
ing) (Yamaguchi and Ishii, 2005; Yamaguchi et al., 2007; 
Fletcher, 2010; Behm et al., 2011), and it is unclear 
whether this can be considered an effect of short-duration 
dynamic stretching. Moreover, these previous studies did 
not describe the speed and amplitude of the dynamic 
stretching. Dynamic stretching at fast speeds is useful for 
improving muscle performance compared to low speeds 
due to an increment in heart rate (Fletcher and Anness, 
2007).  On the other hand, dynamic stretching at uncon-
trolled speeds and amplitude inhibits the improvement of 
muscle performance after the stretch (Bandy et al., 1997). 
In addition, fatigue of dynamic stretching inhibits the im-
provement of muscle strength after dynamic stretching 
(Mizuno, 2022). Therefore, in order to develop an effective 
dynamic stretching program as a part of a warm-up pro-
gram, it is necessary to examine in detail the effective 
speed and amplitude of 30 seconds of dynamic stretching 
for improving muscle strength.  

To our best knowledge, there is no study examining 
the effects of dynamic stretching for a short duration on a 
change in flexibility (ROM and muscle-tendon unit stiff-
ness), which is related to the occurrence of muscle tendon 
injuries (Kaufman et al., 1999; Watsford et al., 2010; 
Pickering et al., 2017). Changes in ROM after stretching 
are attributed to changes in stretching tolerance and visco-
elastic properties of the muscle. The stretching tolerance 
and viscoelastic properties are measured by using passive 
torque at maximum ROM and muscle-tendon unit            
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stiffness. Therefore, the purpose of the present study was 
to examine the effects of speed (fast- or slow-speed) and 
amplitude (normal- or wide-amplitude) of dynamic stretch-
ing on the strength and flexibility of the hamstrings. It was 
hypothesized that dynamic stretching performed at fast 
speed and normal amplitude would be useful for increasing 
the strength of the hamstrings, based on previous studies 
(Bandy et al., 1997; Fletcher and Anness, 2007). 
 
Methods 
 
Experimental approach to the problem 
A randomized repeated-measures experimental design was 
used to examine the effects of speed and amplitude of dy-
namic stretching on flexibility and strength of the ham-
strings. The participants underwent four different interven-
tions (Slow-Normal, Slow-Wide, Fast-Normal, and Fast-
Wide) of dynamic stretching with an interval of ≧ 24 hours 
between visits, in random order (Figure 1). Participants at-
tended a familiarization session 1 week before the first test-
ing day. In the familiarization session, participants experi-
enced the speed and amplitude of each dynamic stretching 
intervention, and muscle strength and flexibility measure-
ments. The data collection was as follows: rest for 5 
minutes (no warm-up), pre flexibility measurement, pre 
muscle strength measurement, dynamic stretching inter-
vention, post flexibility measurement, and post muscle 
strength measurement. To assess changes in the flexibility 
of the hamstrings in the dominant limb (ball kicking pref-
erence) (Takeuchi et al, 2021b), ROM, passive torque at 
maximum knee extension angle, and muscle-tendon unit 
stiffness were measured before and immediately after dy-
namic stretching. After the flexibility measurement, the 
peak torque during maximum concentric contraction was 
measured to evaluate the muscle strength of the ham-
strings. In addition, heart rate and leg fatigue during 
stretching were assessed. The experiment was performed 

in a university laboratory, where the temperature was 
maintained at 25 °C. 
 
Participants 
Nine healthy recreationally active men (20.8 ± 0.3 years, 
1.74 ± 0.05 m, 64.8 ± 10.0 kg) and six healthy women (20.7 
± 0.4 years, 1.60 ± 0.05 m, 52.0 ± 6.6 kg) were recruited. 
The inclusion criteria were that participants did not regu-
larly perform any flexibility and strength training, and 
those who had no history of lower limb pathology. The 
sample size of the muscle-tendon unit stiffness was calcu-
lated with a power of 80%, alpha error of 0.05, and effect 
size f of 0.25 (middle) (Fletcher, 2010) using G*Power 3.1 
software (Heinrich Heine University, Düsseldorf, Ger-
many), and the results showed that the requisite number of 
participants for this study was 12 participants; thus, 15 par-
ticipants were recruited to account for possible attrition. 
All participants were informed of the requirements and 
risks associated with their involvement in this study and 
signed a written informed consent document. The study 
was performed in accordance with the Declaration of Hel-
sinki (1964). The Ethics Committee of Kobe International 
University approved the study (No. G2022-170).  

 
Sitting position of measurements 
The flexibility assessment was performed in the same fash-
ion as previous studies (Takeuchi and Nakamura, 2020b; 
Takeuchi et al., 2021a; 2021b; 2021c). An isokinetic dyna-
mometer machine (CYBEX NORM, Humac, California, 
USA) was used in the present study. This study used a sit-
ting position with the hip joint flexed, which has been 
shown to efficiently stretch the hamstrings (Kataura et al., 
2017). The participants were seated on a chair with the seat 
tilted maximally, and a wedge-shaped wooden flame was 
inserted between the trunk and the backrest, which set the 
angle between the seat and the back at approximately       
60°. A  previous  study,  which  used  the  same  assessment,

 
 

  
 
 

                Figure 1. Experimental design. 
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eported that the average angle of hip flexion was 111.2° ± 
2.5° (Kataura et al., 2017). The chest, pelvis, and right 
thigh were stabilized with straps. The right knee joint was 
aligned with the axis of the rotation of the isokinetic dyna-
mometer machine. The lever arm attachment was placed 
just proximal to the malleolus medialis and stabilized with 
straps. In the present study, reported knee angles were 
measured using the isokinetic dynamometer machine. A 
90° angle between the lever arm and floor was defined as 
0° of knee flexion/extension. The participants were in-
structed to relax during the flexibility assessment. 

 
Range of motion, passive torque, and muscle-tendon 
unit stiffness 
ROM and passive torque were measured by using the iso-
kinetic dynamometer. The knee joint was passively ex-
tended from 0 degrees to the maximum angle without pain 
at 5 degrees/second. A previous study showed that this ve-
locity does not cause a stretch reflex (Morse, 2011).  ROM 
was defined as the range from 0 degrees to the maximum 
knee extension angle. The passive torque during ROM 
measurement was recorded in the isokinetic dynamometer. 
After the experiment, the knee extension angle and passive 
torque during the flexibility measurement were exported to 
a personal computer, and the passive torque and muscle-
tendon unit stiffness were analyzed. The passive torque at 
the maximum knee extension angle was used for further 
analysis. 

The muscle-tendon unit stiffness of the hamstrings 
was defined as the values of the slope of the regression line 
that was calculated from the torque-angle curve using the 
least-squares method (Magnusson et al., 1997; Kataura et 
al., 2017; Takeuchi and Nakamura, 2020b; Takeuchi et al., 
2021a). The muscle-tendon unit stiffness was calculated 
from the same knee extension angle range before and after 
dynamic stretching. The calculated knee extension angle 
range was defined as the angle from the 50% maximum 
knee extension angle to the maximum knee extension angle 
measured before dynamic stretching (Kataura et al., 2017; 
Takeuchi and Nakamura, 2020b; Takeuchi et al., 2021b). 
However, if the maximum knee extension angle measured 
after static stretching was smaller than that before stretch-
ing, the muscle-tendon unit stiffness was calculated from 
the 50% maximum knee extension angle to the maximum 
knee extension angle measured after stretching (Kataura et 
al., 2017; Takeuchi and Nakamura, 2020b; Takeuchi et al., 
2021b). 

 
Muscle strength 
The muscle strength assessment was performed in the same 
fashion as a previous study (Takeuchi and Nakamura, 
2020a). The peak torque of knee flexion during maximum 
voluntary isokinetic concentric contraction at 60 de-
grees/second was measured. The participants were secured 
on the isokinetic dynamometer machine in the same fash-
ion as the flexibility assessment. The range of movement 
was set from 0 degrees to maximum knee extension angle. 
The participants performed three submaximal trials on the 
isokinetic dynamometer machine. After the submaximal 
trials, the participants performed three maximum voluntary 

isokinetic concentric contractions. The greatest value of 
the three repetitions was used for the analyses.  

 
Dynamic stretching 
Participants performed dynamic stretching of the dominant 
leg for 30 seconds under four different conditions. No 
warm-up was performed to eliminate the potential interac-
tion between warm-up and dynamic stretching. Partici-
pants stood upright with each hand grasping a horizontal 
bar at waist height. Then, participants flexed their hip joint 
with their knee joint extended at a tempo dictated by a met-
ronome so that their dominant leg swung up to their ante-
rior aspect and their hamstrings were stretched. In Slow-
Normal and Fast-Normal, dynamic stretching was per-
formed at the hip flexion range just before any pain in the 
hamstrings, the range which was confirmed before the 
stretching intervention by slowly flexing the hip joint to the 
maximum angle. In Slow-Wide and Fast-Wide, dynamic 
stretching was performed at the maximum hip flexion an-
gle which could maintain the tempo of stretching without 
any compensations. The amplitude of each dynamic 
stretching is shown in the results section. During dynamic 
stretching, two examiners confirmed that no trunk or knee 
joint compensations occurred.  

 To measure the amplitude of dynamic stretching, 
reflective markers were placed on the greater trochanter 
and lateral malleolus (Takeuchi et al., 2021c). A video 
camera was used to capture an image of the sagittal plane 
during stretching. The range of the hip joint of all leg 
swings was measured by using Image J software (National 
Institutes of Health). A line perpendicular to the floor was 
defined as 0 degrees of hip flexion/extension, and the angle 
between the perpendicular to the floor and the line passing 
through the greater trochanter and lateral malleolus was 
measured. The total angle of the hip joint during dynamic 
stretching was calculated from hip flexion and extension 
range per leg swing. In addition, the angular velocity (de-
gree/second) of dynamic stretching was calculated from 
the total angle (degree) and tempo (second per leg swing) 
of dynamic stretching. 

 
Heart rate and leg fatigue 
Heart rate was assessed before and immediately after dy-
namic stretching by using wearable wireless sensors 
(PULSEENSE, SEIKO, Japan). The level of subjective fa-
tigue of dynamic stretching was quantified by an 11-point 
numerical rating scale (NRS) that ranged from 0 (feel no 
fatigue) to 10 (feeling too fatigued to leg swing anymore). 

 
Reliability  
The test-retest reliability for all dependent variables was 
determined in 4 men and 4 women. The 2 tests were sepa-
rated by 3 days and were performed at the same time of the 
day. The reliability of knee extension ROM (intraclass cor-
relation coefficient (ICC) of 0.96 and 95% confidence in-
terval (95%CI) of 0.84-0.99), passive torque at the maxi-
mum knee extension angle (ICC of 0.89 and 95%CI of 
0.61-0.97), muscle-tendon unit stiffness (ICC of 0.93 and 
95%CI of 0.76-0.98), and muscle strength (ICC of 0.89 and 
95%CI of 0.61-0.97) were acceptable in this study. 
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Statistical analysis 
Statistical analysis was performed according to previous 
studies (Takeuchi et al., 2021e). The distribution of the data 
was assessed using the Shapiro–Wilk test, and it was con-
firmed that the data followed a normal distribution. All var-
iables were described as mean ± standard deviation. A one-
way repeated ANOVA was used to analyze amplitude 
(flexion, extension, and total range) and angular velocity of 
dynamic stretching and NRS data. For heart rate, ROM, 
passive torque, muscle-tendon unit stiffness, and muscle 
strength data, a two-way repeated ANOVA (time [pre vs. 
post] and conditions [Slow-Normal vs. Slow-Wide vs. 
Fast-Normal vs. Fast-Wide]) was used to analyze the inter-
action and main effect. If a significance was detected, post 
hoc analyses using Bonferroni’s test were performed to de-
termine where significant differences occurred. Partial eta 
squared values were reported to reflect the magnitude of 
the differences for each treatment (small = 0.01, medium = 
0.06, and large = 0.14) (Cohen, 1988). Cohen’s d was cal-
culated as the mean difference between pre and post values, 
divided by the pooled standard deviation between pre and 
post (Cohen, 1988). A d of 0.00–0.19 was considered triv-
ial, 0.20–0.49 was considered small, 0.50–0.79 was con-
sidered moderate, and ≥ 0.80 was considered large. The 
analyses were performed using SPSS version 25 (SPSS, 
Inc., Chicago, IL, USA). Differences were considered sta-
tistically significant at an alpha level of p < 0.05. 
 
Results 
 
Range of motion, passive torque, and muscle-tendon  
unit stiffness 

For ROM, there was a significant interaction (p = 0.03, par-
tial eta squared = 0.19) (Figure 2). ROM in Slow-Wide (p 
< 0.01, d = 0.90), Fast-Normal (p < 0.01, d = 0.92), and 
Fast-Wide (p < 0.01, d = 1.25) increased, but it was not 
changed in Slow-Normal (p = 0.12, d = 0.59). 

For the passive torque, there was no significant in-
teraction (p = 0.87, partial eta squared = 0.02) and no main 
effect for intervention (p = 0.30, partial eta squared = 0.08), 
but there was a significant main effect for time (p < 0.01, 
partial eta squared = 0.71) (Figure 2). Passive torque in-
creased after stretching interventions (Slow-Normal, d = 
0.51; Slow-Wide, d =0.72; Fast-Normal, d= 0.74; Wide-
Normal; d = 0.59).  

For the muscle-tendon unit stiffness, there was no 
significant interaction (p = 0.18, partial eta squared = 0.11), 
no main effect for intervention (p = 0.74, partial eta squared 
= 0.03) or time (p = 0.61, partial eta squared = 0.02) (Figure 
2).  

 
Muscle strength 
For muscle strength, there was a significant interaction (p 
= 0.03, partial eta squared = 0.19) (Figure 3). Muscle 
strength increased in Fast-Normal (from 52.8 ± 20.6 Nm to 
55.3 ± 20.4 Nm, p < 0.01, d = 0.79), but it was not changed 
in Slow-Normal (from 53.7 ± 19.1 Nm to 52.8 ± 17.3 Nm, 
p = 0.44, d = 0.34), Slow-Wide (from 51.1 ± 20.1 Nm to 
51.8 ± 19.7 Nm, p = 0.92, d = 0.02), or Fast-Wide (from 
52.9 ± 23.0 Nm to 52.6 ± 23.1 Nm, p = 0.78, d = 0.07). 

 
Heart rate and NRS 
For heart rate, there was no significant interaction (p = 
0.30,  partial  eta  squared = 0.08)  and  no main effect for

 
 

 
 

 
 

Figure 2. Changes in range of motion, passive torque and muscle-tendon unit stiffness. Data were presented as mean ± SD. * p 
< 0.01 vs. pre. † p < 0.01 vs. pre (significant main effect for time). 



Speed and amplitude of stretching 

 
 

 

612 

 

  
 

 
 

Figure 3. Changes in the muscle strength of the hamstrings. Data were presented as mean ± SD. * p < 0.01 vs. pre. 
 
intervention (p = 0.21, partial eta squared = 0.10), but there 
was a significant main effect for time (p < 0.01, partial eta 
squared = 0.66). Heart rate significantly increased after the 
stretching intervention (Slow-Normal, from 65.9 ± 3.7 
bpm to 78.9 ± 15.3 bpm, d = 0.94; Slow-Wide, from 69.5 
± 9.2 bpm to 79.6 ± 9.2 bpm, d = 0.71; Fast-Normal, from 
69.2 ± 8.7 bpm to 85.7 ± 25.1 bpm, d = 0.73; Fast-Wide, 
from 68.9 ± 7.7 bpm to 91.7 ± 26.2 bpm, d = 0.87) (p < 
0.01). 

For NRS, there was a significant interaction (p < 
0.01, partial eta squared = 0.34). Slow-Normal (2.1 ± 0.8) 
was significantly lower than Fast-Normal (3.0 ± 0.9) (p = 
0.03) and Fast-Wide (p = 0.02). There was no significant 
difference between Slow-Normal and Slow-Wide (2.5 ± 
1.0) (p = 0.49). There was no significant difference be-
tween Slow-Wide, Fast-Normal, and Fast-Wide (3.5 ± 1.2) 
(Slow-Wide and Fast-Normal, p = 0.72; Slow-Wide and 
Fast-Wide, p = 0.26; Fast-Normal and Fast-Wide, p = 
0.67). 

 
Amplitude and angular velocity of dynamic stretching 
For the amplitude of dynamic stretching, there was a sig-
nificant interaction in the hip flexion (p < 0.01, partial eta 
squared = 0.54), extension (p < 0.01, partial eta squared = 
0.46), and total ranges (p < 0.01, partial eta squared = 0.60) 
of dynamic stretching (Table 1). In hip flexion and total 
ranges, Slow-Wide was significantly higher than Slow-
Normal (p < 0.05) and Fast-Normal (p < 0.01). In all am-
plitudes, Fast-Wide was significantly higher than Slow-
Normal (p < 0.01), Slow-Wide (p < 0.01), and Fast-Normal 
(p < 0.01). 

For the angular velocity of dynamic stretching, 
there was a significant interaction (p < 0.01, partial eta 
squared = 0.90). Slow-Normal was significantly lower than 
Slow-Wide (p = 0.03), Fast-Normal (p < 0.01), and Fast-
Wide (p < 0.01). Slow-Wide was significantly lower than 
Fast-Normal (p < 0.01) and Fast-Wide (p < 0.01). Fast-
Normal was significantly lower than Fast-Wide (p < 0.01). 
 
Discussion 
 
Although many previous studies examined effective tech-
niques of dynamic stretching for improving muscle 
strength, none have studied the detailed conditions (speed 
and amplitude) of 30 seconds of dynamic stretching, which 
is commonly used in sports settings. The present study 
compared the effects of 4 different speeds and amplitudes 
of dynamic stretching for 30 seconds on the muscle 
strength and flexibility of the hamstrings. The results of the 
study showed that dynamic stretching for 30 seconds at a 
fast speed and normal amplitude (within ROM) was useful 
for improving the muscle strength of the hamstrings. 

Muscle strength increased only in the Fast-Normal 
dynamic stretching protocol. Fletcher compared fast (100 
bpm) and low speed (50 bpm) dynamic stretching consist-
ing of 100 repetitions (10 repetitions × 2 sets  × 5 exercises) 
and showed that fast speed dynamic stretching was better 
for improving jump performance than slow speed because 
of an increment in heart rate (Fletcher, 2010). In the present 
study, an increment in heart rate after dynamic stretching 
would not be related to increment in the muscle strength in 
Fast-Normal because all interventions increased the heart

 
         Table 1. Amplitude and angular velocity of dynamic stretching. 

 Amplitude (°) 
Angular velocity (°/second) 

 Hip flexion Hip extension Total range 
Slow-Normal 68.3 ± 13.1 3.0 ± 3.7 71.3 ± 12.7 71.3 ± 12.7 
Slow-Wide 80.1 ± 14.6 *† 6.0 ± 6.9 86.1 ± 17.1 *† 86.1 ± 17.1 * 

Fast-Normal 66.0 ± 13.2 7.3 ± 7.8 73.3 ± 15.1 146.6 ± 30.3 *† 
Fast-Wide 86.4 ± 17.5 *†§  14.3 ± 7.0 *†§ 100.7 ± 21.3 *†§ 201.4 ± 42.8 *†§ 

Data were presented as mean ± SD. * p < 0.05 vs. Slow-Normal. ** p < 0.01 vs. Slow-Normal. † p < 0.01 vs. Fast-Normal. § p < 0.01 
vs. Slow-Wide. 
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rate without any difference of change. Post-activation po-
tentiation enhancement (PAPE) is one of the important 
mechanisms for increment in muscle strength after dy-
namic stretching (Opplert and Babault, 2018). PAPE is a 
transient improvement of muscle contractile performance 
after previous contractile activities (Sale, 2002). The effect 
of PAPE is related to the degree of muscular recruitment of 
the contraction (Sale, 2002; Hough et al., 2009; Opplert 
and Babault, 2018), and fast speed dynamic stretching in-
creases EMG amplitude compared to low speed (Fletcher, 
2010). If fast dynamic stretching increases muscle strength 
due to the PAPE mechanism, then Fast-Wide, in which the 
intervention was performed at the fastest speed, should in-
crease the muscle strength of the hamstrings. Previous 
studies reported that speed, amplitude, and end-range 
forces applied by dynamic stretching influence spinal and 
alpha-motorneuron excitability (Burke et al., 1978; Fetz et 
al., 1979; Vujnovich and Dawson, 1994; Guissard et al., 
2001; Opplert and Babault, 2018). The effects are at-
tributed to a significantly inhibitory contribution from 
Golgi tendon organs (Burke et al., 1978; Vujnovich and 
Dawson, 1994; Opplert and Babault, 2018). The Golgi ten-
don organs respond mainly to rapid and large-amplitude 
stretching and to the end-range forces applied, by decreas-
ing the motoneuron excitability (Burke et al., 1978; 
Vujnovich and Dawson, 1994). Therefore, it was suggested 
that 30 seconds of dynamic stretching at a fast speed and 
normal amplitude is useful for an increase in the muscle 
strength of the hamstrings, but dynamic stretching at a wide 
amplitude could inhibit the increment in the muscle 
strength.  

In the present study, ROM increased in Slow-Wide, 
Fast-Normal, and Fast-Wide but was not changed in Slow-
Normal. In addition, the muscle-tendon unit stiffness of the 
hamstrings did not change in any intervention. Change in 
ROM is attributed to changes in stretching tolerance and 
muscle-tendon unit stiffness (Behm et al., 2016; Opplert 
and Babault, 2018). In the present study, passive torque at 
the maximum knee extension angle was used to assess 
stretching tolerance (Kataura et al., 2017; Takeuchi and 
Nakamura, 2020a; Takeuchi et al., 2021a; 2021d). There-
fore, it was indicated that 30 seconds of dynamic stretching 
at fast speed or wide amplitude increased ROM due to an 
increment in stretching tolerance, but did not change the 
muscle-tendon unit stiffness of the hamstrings in either 
method. The results of the present study did not suggest 
why ROM did not change in Slow-Normal although the 
passive torque increased. However, other factors (e.g., 
muscle temperature and muscle activities) may be involved 
these results, and further examination is necessary. Previ-
ous studies reported that dynamic stretching at 60 rpm and 
normal amplitude (within ROM) for 120 (Mizuno, 2017) 
and 210 seconds (Mizuno and Umemura, 2016) did not 
change muscle-tendon unit stiffness although dynamic 
stretching for 300 seconds significantly decreased it (Iwata 
et al., 2019). Moreover, dynamic stretching performed at 
the last 5 degrees of ROM for 120 seconds significantly 
decreases muscle-tendon unit stiffness (Konrad et al., 
2017). These data indicated that the duration and amplitude 
of dynamic stretching are important factors to decrease 
muscle-tendon stiffness. In previous studies regarding 

static stretching, stretching duration and intensity are re-
lated to change in the muscle-tendon unit stiffness of the 
hamstrings, and longer (more than 180 seconds) (Matsuo 
et al., 2013; Nakamura et al., 2019) or higher intensity 
(120%ROM) (Kataura et al., 2017; Takeuchi and 
Nakamura, 2020a; 2020b; Takeuchi et al., 2021a; 2021b; 
2021c) of stretching effectively decrease it. The minimum 
duration, speed, and amplitude of dynamic stretching re-
quired to decrease the muscle-tendon unit stiffness of the 
hamstrings are not known. However, it is possible that the 
30 seconds of dynamic stretching used in sports settings 
may not be useful in a decrement in the muscle-tendon unit 
stiffness regardless of the speed and amplitude of the 
stretch.  

The present study examined the speed and amplitude 
of dynamic stretching. However, the load of dynamic 
stretching was not measured. In static stretching, it was 
found that a load of static stretching exerted on the ham-
strings differs for each subject, even if the static stretching 
is performed under the same conditions (same duration and 
intensity), and the applied load is related to the decrease in 
the muscle-tendon unit stiffness of the hamstrings 
(McCrary et al., 2015). The applied load of dynamic 
stretching should be influenced by its speed, amplitude, 
and duration. It is necessary to quantify the applied load of 
dynamic stretching and to examine the relationship be-
tween the load and changes in flexibility and muscle 
strength after dynamic stretching.  

 
Conclusion 
 
Only 30 seconds of dynamic stretching at fast speed and 
normal amplitude increased the muscle strength of the 
hamstrings. No intervention changed the muscle-tendon 
unit stiffness of the hamstrings. 
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Key points 
 
 We investigated the acute effects of different speeds 

and intensities of dynamic stretching on strength and 
flexibility of the hamstrings 

 In all interventions, the passive torque increased, and 
muscle-tendon unit stiffness did not change. 

 The muscle strength of the hamstrings increased only 
after dynamic stretching at fast speed (60rpm) with 
normal amplitude (within range of motion). 
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