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Abstract 
When identifying talent, the confounding influence of maturity 
status on motor performances is an acknowledged problem. To 
solve this problem, correction mechanisms have been proposed to 
transform maturity-biased test scores into maturity-unbiased 
ones. Whether or not such corrections also improve predictive va-
lidity remains unclear. To address this question, we calculated 
correlations between maturity indicators and motor performance 
variables among a sample of 121 fifteen-year-old elite youth foot-
ball players in Switzerland. We corrected motor performance 
scores identified as maturity-biased, and we assessed correction 
procedure efficacy. Subsequently, we examined whether cor-
rected scores better predicted levels of performance achievement 
6 years after data collection (47 professionals vs. 74 non-profes-
sional players) compared with raw scores using point biserial cor-
relations, binary logistic regression models, and DeLong tests. 
Expectedly, maturity indicators correlated with raw scores 
(0.16 ≤ | r | ≤ 0.72; ps < 0.05), yet not with corrected scores. Con-
trary to expectations, corrected scores were not associated with 
an additional predictive benefit (univariate: no significant r-
change; multivariate: 0.02 ≤ ΔAUC ≤ 0.03, ps > 0.05). We do not 
interpret raw and corrected score equivalent predictions as a sign 
of correction mechanism futility (more work for the same output); 
rather we view them as an invitation to take corrected scores se-
riously into account (same output, one fewer problem) and to re-
vise correction-related expectations according to initial predictive 
validity of motor variables, validity of maturity indicators, initial 
maturity-bias, and selection systems. Recommending maturity-
based corrections is legitimate, yet currently based on theoretical 
rather than empirical (predictive) arguments. 
 

Key words: Soccer, motor skills, physical fitness, growth and de-
velopment, confounding variable, predictive value of tests. 

 
 

Introduction 
 
Identifying talent in youth football ultimately comes down 
to making a binary developmental prediction: Does a spe-
cific youth player have what it takes to become a profes-
sional as an adult or not? To make this prediction, which 
aims to support coaches’ opinions in the selection process 
(Sieghartsleitner et al., 2019b; Lath et al., 2020), research-
ers use a “shopping list of key criteria” (Williams and 
Reilly, 2000) to build talent identification models based on 
general linear models (GLM) (for an exceptional example 
of non-linear approaches, see Siener et al., 2021; Zuber et 
al., 2016; Pfeiffer and Hohmann, 2012). In essence, they 
break down talent into multidisciplinary components (Vae-
yens et al., 2006), such as physiological (Dodd and 
Newans, 2018), skill-related (Murr et al., 2018), psycho-
logical (Ivarsson et al., 2020), and sociological (Reeves et 

al., 2018b) criteria, all of which explain some part of career 
outcome variability (professional vs. non-professional) 
(Sarmento et al., 2018; Williams et al., 2020). Once related 
tests are completed, all test scores are usually either con-
verted into z-scores (Turner, 2014; Figueiredo et al., 2011; 
Souza-Lima et al., 2020), weighted in a scoring system 
(Fuchslocher et al., 2011; Höner et al., 2015), or aggregated 
within linear predictive models (Sieghartsleitner et al., 
2019b; Höner et al., 2021). Such procedures build a total 
score (for example, total number of points or forecasted 
probability of becoming a professional in a binary logistic 
regression model) and position players on a talent contin-
uum, such as ranking lists. Regardless of the calculation 
procedure, the ground rule of such a summative approach 
remains unchanged: “the better the input (observed test 
scores), the better the output (total score)” (Overton, 2014; 
Maszczyk et al., 2014).  
 
Distortion problems during puberty 
Theoretical (Cumming et al., 2012; Baxter-Jones et al., 
2005) and empirical reasons (Meylan et al., 2010; Malina 
et al., 2015) suggest that the input-output operations of ad-
ditive-linear scientific models encounter major distortion 
problems during puberty. From a biological standpoint, in-
dividuals belonging to the same age group can differ 
strongly because some are up to 5 years older/younger than 
others (Malina et al., 2004). It is only consequential that 
inter-individual maturity differences affect indicators of 
athletic performance and potential, favoring either late or 
early maturing athletes to different degrees according to 
maturation stage, age, task or sport considered (Baxter-
Jones et al., 2005; Mitchell et al., 2017; Hill et al., 2020; 
Javet et al., 2022). In sports like football, athletes who are 
closer to fully mature status are repeatedly shown to per-
form better in motor tests than others who are less devel-
oped (Malina et al., 2005; Malina and Cumming, 2004; 
Albaladejo-Saura et al., 2021; Sieghartsleitner et al., 
2019a; with exception of the motor awkwardness hypothe-
sis; Quatman-Yates et al., 2012). As a consequence, failing 
to consider issues of inter-individual maturity differences 
means players are erroneously positioned on talent contin-
uums: The more mature, the better the input (motor perfor-
mances), the better the output (total score, game evalua-
tion, estimated potential, selection and success chances”; 
Cripps et al., 2016; Hill et al., 2021; Peña-González et al., 
2021; Johnson et al., 2017; with exception of the underdog 
hypothesis; Smith and Weir, 2020; Cumming et al., 
2018b). Therefore, while collecting motor performance 
data was an important first step, the next logical one is to 
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move forward with a “game plan” to address these issues 
(Cumming, 2018; Baxter-Jones et al., 2005).  
 
Potential solutions 
On the side of the coaches’ eye, some solutions such as bio-
banding—grouping players by maturity status (Cumming 
et al., 2018a; Cumming et al., 2017; Malina et al., 2019; 
Reeves et al., 2018a)—or maturation-ordered shirt num-
bers (Lüdin et al., 2022; Mann, 2020) are already in place 
in different sport organizations around the world to support 
better rating of in-game performance. On the side of scien-
tific models, linear (Larochelambert et al., 2022) and cur-
vilinear (Abbott et al., 2020) correction mechanisms have 
been proposed to deal with inter-individual developmental 
differences (maturity or relative age, for the distinction see 
Towlson et al., 2021b). They have been implemented in al-
pine skiing (Larochelambert et al., 2022), athletic sprinting 
(Romann and Cobley, 2015; Brustio and Boccia, 2021), 
long jumping (Brustio et al., 2022), or swimming (Hogan 
et al., 2022). Correction mechanisms estimate how good 
adolescent athletes would be if they had competed or per-
formed some motor tasks without developmental advances 
or delays. As such, they provide better informational inputs 
(corrected test scores, in the sense of maturity-unbiased). 
From a pedagogical viewpoint, corrected scores aspire to 
equalize the selection chances by promising (biologically) 
equivalent, and thus fair, inter-individual performance 
comparisons (Abbott et al., 2021b; Cobley et al., 2020). 
However, the main goal of talent identification is not (only) 
fairness, it is (at its core) accurate predictions of a player’s 
future chance of success in adulthood (Sieghartsleitner et 
al., 2019b; Bergkamp et al., 2019). 
 
The present study 
To our knowledge, the accuracy differences of long-term 
predictions from corrected and uncorrected scores are pres-
ently unexamined. Our study’s purpose provided insight 
into this topic. To this end, we investigated whether (1) ma-
turity status influences our motor talent criteria (if not, no 
correction would be necessary). Then, for the sake of par-
simony and implementation simplicity, we corrected the 
maturity-biased talent criteria with a linear correction 
mechanism and examined if (2) the correction mechanism 
worked (if not, the correction would be useless). Finally, 
we examined if (3) corrected test scores (univariate predic-
tion) or (4) models including several corrected motor 
scores (multivariate prediction) make better predictions of 
adult performance levels of youth football players when 
compared with raw scores/model.  
 
Methods 
 
Participants 
As part of the Institute of Sport Science at the University 
of Bern’s Talent selection and development in Swiss Foot-
ball project, we studied motor performances of 15-year-old 
male elite football players born in 1999 (N = 121; 
Mage = 15.13, SD = 0.34), who played at the highest Swiss 
national level in their age category. On the one hand, 
choosing this age group was motivated by biological con-
siderations (it should still be considerably affected by ma-
turity differences; Malina et al., 2015) and on the other 

hand, by (selection-relevant) cultural realities (from the 
age group U15 onwards, players enter a new phase in the 
national football-specific youth development program 
where performance and exposure to international competi-
tion gains in importance; Schweizer Fussballverband, 
2014).  
The study received approval from the Ethics Committee of 
the Faculty of Human Sciences of the University of Bern. 
All players and their parents or guardians provided their 
written informed consent to participate.  
 
Motor performances 
Based on a football-specific literature review (Williams et 
al., 2020) and subjective talent criteria mentioned by 
coaches (Jokuschies and Conzelmann, 2016; Bergkamp et 
al., 2022), we attempted to account for the diversity of mo-
tor abilities necessary to excel in football by including a 
series of eight motor performance tests (see Table 1). Their 
practical relevance is demonstrated by the fact that they are 
used by both the Swiss and German Football Association 
as part of their talent identification program (Höner et al., 
2015; Schweizer Fussballverband, 2016). Moreover, these 
tests have repeatedly been found to validly predict future 
performance levels (Höner et al., 2021; Leyhr et al., 2018; 
Höner et al., 2017; Höner and Votteler, 2016; Sieghartsleit-
ner et al., 2019a). 
 
Maturity indicators 
We operationalized player maturity status at age 15 with 6 
validated pragmatic somatic prediction methods (Mirwald, 
Moore-1, Moore-2, Fransen-1, Fransen-2) and attained 
percentage of predicted adult height (%PAH) (see Table 2 
for equations and references). Like other research groups 
(Leyhr et al., 2020a), we call these prediction methods 
“pragmatic” because they can be used easily and prospec-
tively. Six years later (at the age of 21), all players were re-
contacted and asked to complete a questionnaire which 
aimed to collect their real (in the sense of observed as op-
posed to predicted) adult height. In 37% of the cases, they 
did not respond, so we searched transfermarkt. Based on 
the principle of crowd wisdom (Peeters, 2018), online plat-
form transfermarkt is regularly used as a source of infor-
mation on talent (Leyhr et al., 2020b; Skorski et al., 2016; 
Doyle and Bottomley, 2018) and sport management re-
search (Herm et al., 2014; Prockl and Frick, 2018; Müller 
et al., 2017). By knowing players’ real adult height, we cal-
culated a seventh maturity indicator retrospectively—the 
attained percentage of the real adult height (%RAH). Alt-
hough we are aware that %RAH represents only a sub-di-
mension of biological maturity (the somatic dimension; 
Baxter-Jones, 2017), we consider it a more reliable and ob-
jective method compared with other indicators since “the 
one closer to adult height is more mature than the other 
who is further from adult height” (Malina et al., 2015).  
 
Adult performance level (career outcome) 
We collected adult performance level in the 2020–2021 
season in the follow-up questionnaire. By knowing adult 
performance level, we objectively classified players into 
two groups: professionals (n = 47) who played in the 1st to 
3rd league within Switzerland or held professional con-
tracts abroad and non-professionals (n = 74).    
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Table 1. Talent criteria in the motor performance domain. 
Test/Variable Description Reliability coefficient* Reference 

40-m sprint (sec) 
40-m sprint test performed without start signal. Twin photoelectric 
sensors at the start triggered chronometry and an identical device 
recorded the time after 40 meters. 

0.96 
Zuber et al. 
(2016) 

Jumping,  
CMJ (cm) 

An accelerometric system (Myotest, Sitten, Switzerland) measured 
five attempts in a vertical counter movement jump test (CMJ, with-
out arm swing). We retained the height of the best attempt.  

0.96 
Casartelli 
et al. 
(2010) 

Agility (sec) 

Players sprinted a short distance, ran around three poles with a 
change of direction (right, left, right), and repeated these actions 
mirror-inverted before finishing.  The time to complete this run was 
recorded. 

0.83 
Höner et al. 
(2015) 

Yo-Yo (m) 

Players ran back and forth between two lines 20 meters apart with 
a 10-second pause between two runs. Acoustic signals determined 
the pace. Pace increased successively. When players fell behind the 
pace, the run was stopped. We recorded the distance covered prior 
to last regularly 20 m lap as the test result. 

0.93 
Bangsbo et 
al. (2008) 

Dribbling (sec) 
Course and procedure of dribbling test was identical to the agility 
test except that the dribbling test was performed with a ball. 

0.56 
Höner et al. 
(2015) 

Passing (sec) 

Players quickly passed balls in a confined zone and bounced balls 
off four walls in turn, one in each direction. After the fourth pass, 
the same sequence was repeated in reverse order (reaching a total 
of nine passes). Time was measured manually with stopwatches.  

0.68 
Zuber et al. 
(2016) 

Shooting (points) 

Players shot balls eight times into target zones of goals (2 targets, 
2 feet, 2 attempts). Successful shots on the target were subjectively 
rated by speed on a three-point rating scale (1 = low, 2 = medium, 
and 3 = high speed). The test score was the overall number of 
points.  

0.31 
Höner et al. 
(2015) 

Juggling (points) 

Players juggled balls along a figure 8-shaped course (alternating 
left and right foot). Players scored 1 point for each quarter of a cir-
cle they completed. We stopped the test after 45 seconds or as soon 
as a mistake was made, such as one foot twice in succession; the 
ball touching the ground or any other part of the body. The number 
of points served as the test score.  

0.79 
Höner et al. 
(2015) 

40-m sprint = 40-meter sprint; CMJ = counter movement jump; Yo-Yo = Level 1 Yo-Yo intermittent recovery test. 
*In all instances, test-retest reliability (rtt) was calculated, except for the CMJ, where the ICC was used. 
 
Table 2. Maturity indicators and calculation procedures. 

Indicator Calculation procedure Reference 

Mirwald 
Maturity offset = –9.236 + (0.0002708 ꞏ leg length and sitting height inter-
action) + (–0.001663 ꞏ age and leg length interaction) + (0.007216 ꞏ age 
and sitting height interaction) + (0.02292 ꞏ weight by height ratio) 

Mirwald et al. (2002) 

Moore-1 Maturity offset = –8.125741 + (0.0070346 ꞏ age ꞏ sitting height) Moore et al. (2015) 
Moore-2 Maturity offset = –7.999994 + (0.0036124 ꞏ age ꞏ height) Moore et al. (2015) 

Fransen-1 

Maturity ratio = 6.986547255416 + (0.115802846632 ꞏ age) + 
(0.001450825199 ꞏ age2) + (0.004518400406 ꞏ weight) – 
(0.000034086447 ꞏ weight2) – (0.151951447289 ꞏ height) + 
(0.000932836659 ꞏ height2) – (0.000001656585 ꞏ height3) + 
(0.032198263733 ꞏ leg length) – (0.000269025264 ꞏ leg length2) – 
(0.000760897942 ꞏ height ꞏ age) 

Fransen et al. (2018b) 

Fransen-2 

Maturity ratio = 6.99 + (0.154 ꞏ age – 0.242) + (0.00452 ꞏ weight) – 
(0.0000341 ꞏ weight2) – (0.152 ꞏ height) + (0.000933 ꞏ height2) – 
(0.00000166 ꞏ height3) + (0.0322 ꞏ leg length) – (0.000269 ꞏ leg length2) – 
(0.000761 ꞏ height ꞏ age) 

Fransen et al. (2018a) 

%PAH 
%PAH = (height at the age of 15 ꞏ 100) / predicted adult height according 
to the method of Sherar et al. (2005) 

Sherar et al. (2005) 

%RAH %RAH = (height at the age of 15 ꞏ 100) / real adult height at the age of 21 Baxter-Jones et al. (2005) 
%PAH = attained percentage of predicted adult height; %RAH = attained percentage of the real adult height. Measurement units: centimeters 
(leg length, sitting height, height), kilograms (weight), and years (age). 

 
Data analysis 
Due to absence, injury, missed, incorrect, or aborted test 
series, there were missing scores in the study variables 
(range: 0.8%–6.6%). Little’s test (1988) showed these data 
were not randomly missing (2 = 172.91, df = 137, 
p = 0.020). Since there was no clear indication the MAR 
hypothesis could not be retained, we used EM-imputation 

based on all study variables to complete the dataset. We 
analyzed the imputed dataset.  
 
Research question 1: Does maturity status influence 
motor performance scores?  
Pearson’s correlations served as the measure of association 
between raw or uncorrected test scores and each maturity 
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indicator. Accordingly, we identified motor performance 
tests confounded by maturation and requiring correction.  
 
Correction mechanism 
To correct maturity-biased raw scores, we used a four-step 
correction mechanism. Table 3 illustrates these steps using 
the example of the sprint scores, which were corrected us-
ing %RAH as a maturity indicator. Table 3 also shows how 
the same sprint score (6.20 sec) of three fictitious players 
with different maturity statuses (85%, 95%, and 100%, re-
spectively) differed after correction (5.41, 6.17, and 
6.63 sec, respectively). 

Step 1 (linear regression): We conducted a simple lin-
ear regression that predicted raw test score (RS) of spe-
cific motor tasks based on maturity status (MS, Table 2).  

Step 2 (create new variables): We stored parameters (b0 
and b1) defining the corresponding regression line. The 
coefficient b0 is the constant in the equation. The coeffi-
cient b1 indicates the change in the expected raw score 
associated with an increase of one unit in the maturity 
status (MS). By means of these two parameters (b0 and 
b1), we computed two new variables:  

1) The test score expected from each player based 
solely on maturity status: expected raw score 
(ERS) = b0 + b1MSplayer. 

2) The test score expected from the average maturing  

player in the sample: expected score of the average ma-
turing player (ESA) = b0 + b1MSmean. 

Step 3 (calculate correction factor): We divided RS of 
players by biologically expected RS (ERS, see step 2) for 
an individual correction factor (CF). 

Step 4 (generate corrected test score): We multiplied 
CF by ESA for corrected scores (CS). Since this calcula-
tion was based on the ESA, it led to a biological uniformi-
zation of the group and provided test scores an exact rep-
lica each player with normal development was expected 
to achieve. By “normal,” we mean average as opposed to 
early or late. 

We repeated this procedure for each motor performance 
test and maturity indicator. In this way, there are corrected 
test scores for each player in each motor performance test 
using Mirwald, Moore-1, Moore-2, Fransen-1, Fransen-2, 
%PAH, or %RAH as maturity indicators. 
 
Research question 2: Is the correction mechanism ef-
fective?  
To ensure the correction mechanism served its purpose, we 
calculated Pearson’s correlations between each maturity 
indicator and their corresponding corrected test scores. If 
r = 0, then R2 = 0, thus implying that the proportion of the 
variance that a maturity indicator and a motor performance 
test previously shared was successfully partialed out.  

         
Table 3. Four-step correction mechanism and example (three fictitious players with same raw test score but different maturity 
status). 
Procedure  Example 

In
it

ia
li

za
ti

on
 

  Fictitious player 1:
Late maturer 

Fictitious player 2: 
Average maturer 

Fictitious player 3:
Early maturer 

Variable 1 
Indicator of maturity 

status (MS) 
Use MS of all 

the players 
MS = %RAH MS = 85% MS = 95% MS = 100% 

Variable 2 Raw test score (RS) 
Use RS of all 

the players 
RS = 40-meter 

sprint 
RS = 6.20 sec RS = 6.20 sec RS = 6.20 sec 

  
Calculate 
MSMean  

(sample mean)

MSMean = 95.4
% 

   

C
or

re
ct

io
n 

m
ec

ha
ni

sm
 

Step 1 

Compute a simple lin-
ear regression with MS 
as independent varia-

ble and RS as 
dependent variable  

and save the regression 
coefficients 

b0 b0 = 13.74    

b1 b1 = –0.08    

Step 2 

Compute the expected 
raw score (ERS) of 

each player 

ERS = b0 + b1 
ꞏ MSPlayer 

ERS = 13.74–
0.08 ꞏ MSPlayer

ERS = 13.74 – 0.08 
ꞏ 85 = 6.74 sec 

ERS = 13.74 – 0.08 
 ꞏ 95 = 5.91 sec 

ERS = 13.74 – 0.08 
ꞏ 100 = 5.50 sec 

Compute the expected 
score of the average 

maturing player (ESA) 

ESA = b0 + b1 
ꞏ MSMean 

ESA = 13.74–
0.08 ꞏ 95.40 
= 5.88 sec 

   

Step 3 
Compute a correction 

factor (CF) for  
each player 

CF =  
RS / ERS 

 
CF = 6.20 / 6.74  

= 0.92 
CF = 6.20 / 5.91  

= 1.05 
CF = 6.20 / 5.50  

= 1.13 

Step 4 
Compute the corrected 

score (CS) for  
each player 

CS =  
ESA ꞏ CF 

 
CS = 5.88 ꞏ 0.9  

= 5.41 sec 
CS = 5.88 ꞏ 1.05 

 = 6.17 sec 
CS = 5.88 ꞏ 1.13 

 = 6.63 sec 

MS = maturity status; RS = raw score; ERS = expected raw score; ESA = expected score of the average maturing player; CF = correction factor; 
CS = corrected score; %RAH = attained percentage of the real adult height. 
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Research question 3: Does each univariate prediction of 
adult performance level improve after applying the cor-
rection mechanism? 
To determine whether each corrected talent criterion was 
more closely linked with adult performance level (profes-
sional vs. non-professional) than each raw talent criterion, 
we computed point-biserial correlations—a special case of 
the ordinary Pearson correlation. If the correlation coeffi-
cients had noticeable descriptive differences, we tested 
them for significance using the R package cocor 
(Diedenhofen and Musch, 2015). 
 
Research question 4: Does the multivariate prediction 
of the adult performance level improve significantly af-
ter applying the correction mechanism? 
Answering the fourth question required three main analyt- 
ical steps: (1) regression modelling, (2) estimating receiver 
operating characteristic curves, and (3) applying the 
DeLong-Test.  

Regression modelling: We estimated eight binary 
logistic regression models that included eight motor talent 
criteria (Table 1; z-values). Model one served as the refer-
ence model; raw test scores were used as input (raw motor 
performance model). Depending on results from research 
question 1, the seven other models included motor perfor-
mance scores corrected based on each corresponding ma-
turity indicator (e.g., model with test scores corrected ac-
cording to Mirwald). We compared predictions from these 
multivariate regression models with a baseline model—a 
model without predictors (Field, 2018). We tested the sig-
nificance of the coefficients (improvement over the base-
line model) with the omnibus test of the model coefficients 
(Zeileis and Hothorn, 2002). Its null hypothesis (H0) is that 
both models (that is, the baseline model and a regression 
model with eight predictors) predict the adult performance 
level of the players equally well. We tested appropriate cal-
ibration with the Hosmer-Lemeshow test (Hosmer et al., 
2013). The model fit was quantified using Nagelkerke-R2 
(R2

N). Each regression model generated the probability of 
being classified as professional or non-professional for all 
players based on a combination of (raw or corrected) motor 
performance. If a player’s predicted probability exceeded 
0.5, the player was classified as professional. 

Receiver operating characteristic analysis (ROC): 
The predicted probabilities we obtained in each regression 
analysis were used to create non-parametric ROC curves. 
In other words, each ROC curve represented one of the re-
gression models. The area under each curve (AUC) can be 
used as an index of the classification’s (discriminative abil-
ity) overall quality since it reflects the relationship between 
sensitivity (correctly identified professionals) and specific-
ity (correctly identified non-professionals) (Hanley, 1989). 
The more players are correctly classified by a regression 
model, the closer the AUC is to 1. The following guidelines 
have been suggested (Hosmer et al., 2013) to facilitate the 
interpretation of the AUC: 0.9–1.0 (outstanding discrimi-
nation), 0.8–0.9 (excellent discrimination), 0.7–0.8 (ac-
ceptable discrimination), and 0.5–0.7 (poor discrimina-
tion). 

DeLong-Test: We compared the AUC of each of the 
seven corrected regression models along with the raw        

regression model by employing the DeLong-Test. The H0 
states that the raw and each corrected model do not differ 
in their ability to predict a dichotomous criterion (profes-
sional vs. non-professional) over 6 years (H0: ΔAUC = 0).  

We set alpha levels for all significance tests to 0.05.  
However, in view of the seven model comparisons, we ad-
justed the significance level for research question 4 using 
Bonferroni’s method ( = 0.05/7 = 0.007). We analyzed 
data using IBM SPSS version 27.  
 
Results 
 
We provide means and standard deviations of all variables 
in the supplementary material (Table S1). According to all 
maturity indicators except %PAH (r = 0.21; p = 0.023), at 
the age of 15, the maturity status of the 47 professionals 
and 74 non-professionals did not differ significantly (Table 
4).  
 
Research question 1: Does maturity status influence 
motor performance scores?  
Table 5 confirms the need for a correction mechanism by 
displaying significant maturational influences 
(0.16 ≤ | r | ≤ 0.72; ps < 0.05), which were more pro-
nounced in functional capacities than in motor skills and 
followed the same principle: the more mature, the better 
the player performed. All negative correlations referred to 
motor tasks with reverse coding (the shorter the time 
needed, the faster and the better) and therefore do not con-
tradict this principle.  
 
Research question 2: Is the correction mechanism ef-
fective?  
As expected, all significant correlations in Table 5 were re-
duced to (almost) zero and became insignificant 
(0.00 ≤ r ≤ 0.03) after applying the correction mechanism.  
 
Research question 3: Does each univariate prediction of 
adult performance level improve after applying the cor-
rection mechanism? 
Table 6 illustrates significant correlations between raw mo-
tor talent criteria of sprinting, agility, dribbling, juggling, 
and shooting and adult performance level 
(0.16 ≤ | r | ≤ 0.29, ps < 0.05). Thus, some motor variables 
appear useful for making predictions. In most cases, the 
predictive validity of these variables barely changed after 
we applied the correction mechanism. We only observed 
slight descriptive improvements or deteriorations in the 
correlations with adult performance levels after application 
of the correction mechanism (e.g., sprint raw: r = – 0.24 vs. 
sprint corrected with %RAH: r = – 0.29 vs. sprint cor-
rected with %PAH: r = – 0.13). However, none of these 
differences were significant. 
 
Research question 4: Does the multivariate prediction 
of the adult performance level improve significantly af-
ter applying the correction mechanism? 
All eight regression models (one with raw scores, and 
seven with corrected scores when needed; Table 7) were 
statistically significant (omnibus test of model coefficients: 
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ps < 0.05) and appropriately calibrated (Hosmer-Leme-
show test: ps > 0.05). The models explained between 19% 
and 28% (Nagelkerke’s R2) of the variance among adult 
performance level and correctly classified 64.5% to 68.6% 
of the cases.  

However, DeLong tests revealed that no model 
based on the corrected scores was significantly better than 
those based on raw ones (see Table 8). Consequently, all 
regression models (raw or corrected) demonstrated similar 
predictive validity (– 0.02 ≤ ΔAUC ≤ 0.03, ps > 0.05).  

 
Table 4. Point-biserial correlations between each maturity indicator and adult performance level (professional vs. non-pro-
fessional; N = 121). 
 Mirwald Moore-1 Moore-2 Fransen-1 Fransen-2 %PAH %RAH 
Adult performance level 0.13 0.14 0.10 0.13 0.13 0.21 0.02 

%PAH = attained percentage of the predicted adult height; %RAH = attained percentage of the real adult height. Coding of the adult performance 
level (0 = non-professional, 1 = professional). Critical value of Pearson's r ( = 5%, one-tailed, df = 119): |rcrit| = 0.15. 

 
Table 5. Pearson’s correlation coefficients between raw performance scores and maturity status (N = 121). 

Indicators of ma-
turity status 

Performance test 
Sprint Jumping Yo-Yo Agility Dribbling Passing Juggling Shooting 

Mirwald –.71 .37 .32 –.25 –.20 –.18 .08 .00 
Moore-1 –.70 .37 .33 –.27 –.20 –.18 .11 .01 
Moore-2 –.65 .35 .29 –.16 –.13 –.05 .03 –.01 
Fransen-1 –.67 .34 .32 –.27 –.23 –.24 .11 .02 
Fransen-2 –.66 .33 .31 –.27 –.23 –.25 .11 .02 
%PAH –.72 .37 .35 –.28 –.25 –.22 .10 –.01 
%RAH –.63 .40 .36 –.18 –.24 –.13 .06 .00 

Yo-Yo = Level 1 Yo-Yo intermittent recovery test; %PAH = attained percentage of the predicted adult height; %RAH = attained percentage 
of the real adult height. Measurement units: seconds (sprint, agility, dribbling, passing), centimeters (jumping), meters (Yo-Yo), and points 
(shooting, juggling). Critical value of Pearson's r ( = 5%, one-tailed, df = 119): |rcrit| = 0.15.   

 
Table 6. Point-biserial correlations between each talent criterion (raw and corrected test scores) and the adult performance 
level (professional vs. non-professional; N = 121). 

Type of correction 
Talent criterion 

Sprint* Jumping Yo-Yo Agility* Dribbling* Passing* Juggling Shooting 
None (raw scores) –.24 .02 .13 –.16 –.26 –.15 .20 –.18 
Mirwald –.20 –.03 .10 –.13 –.24 –.13 — — 
Moore-1 –.20 –.03 .10 –.12 –.24 –.13 — — 
Moore-2 –.23 –.02 .12 –.14 — — — — 
Fransen-1 –.20 –.03 .10 –.12 –.24 –.12 — — 
Fransen-2 –.20 –.03 .10 –.12 –.24 –.12 — — 
%PAH –.13 –.06 .07 –.10 –.22 –.11 — — 
%RAH –.29 .01 .13 –.16 –.26 — — — 

Each cell represents the correlation between adult performance level and scores in a test (corrected or uncorrected). For example, the value in the 
last cell of the first column (r = –.29) represents the correlation between adult performance level and scores in the sprint test corrected according 
to %RAH. Yo-Yo = Level 1 Yo-Yo intermittent recovery test; %PAH = attained percentage of the predicted adult height; %RAH = attained per-
centage of the real adult height.  — = not needed since the correlation between motor performance test and maturity indicator was not significant 
in Table 5. Coding of the adult performance level (0 = non-professional, 1 = professional). Measurement units: seconds (sprint, agility, dribbling, 
passing), centimeters (jumping), meters (Yo-Yo), and points (shooting, juggling). Critical value of Pearson’s r ( = 5%, one-tailed, df = 119): 
|rcrit| = 0.15. *Motor tasks with reverse coding (the shorter the time needed, the faster and the better). 

 
Table 7. Goodness-of-fit and classification accuracy of the binary logistic predictive models predicting adult performance level 
(professional vs. non-professional; N = 121). 
Type of correction used 
in predictive motorper-
formance model 

Omnibus test of model coefficients Hosmer-Lemeshow test Model fit Correct classification

2(8) p 2(8) p R2
N % 

None (raw scores) 23.53 .003 6.02 .645 0.24 64.5 
Mirwald 21.40 .006 4.84 .775 0.22 66.9 
Moore-1 21.39 .006 12.11 .146 0.22 67.8 
Moore-2 23.02 .003 6.12 .634 0.24 64.5 
Fransen-1 21.53 .006 2.45 .964 0.22 65.3 
Fransen-2 21.51 .006 4.24 .835 0.22 66.1 
%PAH 18.40 .018 8.79 .361 0.19 68.6 
%RAH 28.23 <.001 3.79 .876 0.28 66.1 

%PAH = attained percentage of the predicted adult height, %RAH = attained percentage of the real adult height. 
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Table 8. Comparison of the discrimination ability of the predictive models with DeLong-Test (N = 121). 
Types of correction mechanisms  
compared in motor performance models  

AUC [95% CI]corrected scores
* 

Δ = AUC [95% CI]corrected scores - 
AUC [95% CI]raw scores

† 
z p 

Mirwald .73 [.63; .82] .00 [–.05; .04] –0.10 .922 
Moore-1 .73 [.64; .82] .00 [–.04; .05] 0.06 .950 
Moore-2 .73 [.64; .82] .00 [–.03; .03] 0.15 .879 
Fransen-1 .73 [.64; .82] .00 [–.05; .05] –0.02 .981 
Fransen-2 .73 [.64; .82] .00 [–.05; .05] 0.04 .972 
%PAH .71 [.61; .80] -.02 [–.07; .02] –0.92 .356 
%RAH .76 [.67; .84] .03 [–.01; .07]  1.33 .182 

%PAH = attained percentage of the predicted adult height, %RAH = attained percentage of the real adult height; AUC = area under the curve. Adjusted 
-level (Bonferroni correction) = 0.007. *AUC [95% CI]corrected scores = These statistics represent the AUC based on the regression model using corrected 
scores. †AUC [95% CI]raw scores = This statistic represents the AUC based on the binary regression model using raw scores and corresponds to 0.73 [0.64; 
0.82]. 
 

Discussion 
 

Our results replicate existing data and information about 
maturity-associated variations: Maturity status correlates 
with motor performance scores and affects functional ca-
pacities, such as sprinting and jumping, more strongly than 
motor skills, such as juggling (Meylan et al., 2010; Alba-
ladejo-Saura et al., 2021). For scientific talent identifica-
tion models operating within a summative approach, our 
results imply that input-output operations are con-
founded—the more mature the player, the better input (test 
scores) and output (total score: predicted probability of be-
ing classified as professional in a binary logistic regres-
sion). In line with previous studies (e.g., Romann and Co-
bley, 2015; Abbott et al., 2021b; Larochelambert et al., 
2022), our correction mechanism served its purpose: Any 
correlation between motor performance test scores and the 
confounder (maturity status) was removed. Yet contrary to 
our expectations, univariate and multivariate predictions of 
adult performance level did not substantially improve with 
corrected scores. 
 

Why did the predictions not improve? Revising expec-
tations and speculating about when the correction 
mechanism might (not) work 
An answer to this question emanates from two lines of 
thought: (1) characteristics of the variables included in the 

correction and prediction process (initial predictive valid-
ity of the motor variable, the initial maturity bias and the 
validity of the maturity indicators) and (2) the selection 
system in which predictions have been made.  
 

Characteristics of the variables included in the correction 
and prediction process 
In the case of univariate prediction, our results indicate that 
the correction mechanism failed generating better predic-
tive variables. We suggest three possible reasons for this 
failure (Figure 1): 1) the variables have no predictive va-
lidity per se (the correction procedure cannot improve 
something, i.e. the predictive value, that doesn’t exist); 2) 
the corrected and raw test scores are very similar (similar 
scores do not entail different predictive results; y-axis); 3) 
the corrected scores are not meaningful (they still contain 
at least the same number of errors as the raw scores; x-
axis).  

The first reason mentioned seems conceivable (the 
motor variables considered have no predictive validity), 
however, we can hardly argue in this direction—on the one 
hand, because most of our results (Table 6), and on the 
other hand, because the empirical discourse related to our 
motor variables does not support it (Leyhr et al., 2018; 
Höner et al., 2021; Höner et al., 2017; Sieghartsleitner et 
al., 2019a). Consequently, we elaborate more deeply on the 
two other reasons that came to mind by means of Figure 1. 

 
 

 

 
 

 
 

Figure 1. Hypothetical relationship between the validity of the maturity indicator used in the correction mech-
anism (x-axis), the maturity bias in the motor performance test to be corrected (y-axis), and their respective 
consequences (degree of meaningfulness and dissimilarity) regarding the generated corrected scores. 
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The first reason mentioned seems conceivable (the 
motor variables considered have no predictive validity), 
however, we can hardly argue in this direction—on the one 
hand, because most of our results (Table 6), and on the 
other hand, because the empirical discourse related to our 
motor variables does not support it (Leyhr et al., 2018; 
Höner et al., 2021; Höner et al., 2017; Sieghartsleitner et 
al., 2019a). Consequently, we elaborate more deeply on the 
two other reasons that came to mind by means of Figure 1. 

The y-axis of Figure 1 implies that the similarity of 
raw and corrected scores impact their differences in predic-
tive validity. The lower the correlations between motor 
performance tests and maturity indicators (Table 5), the 
smaller the confounding influence and (need for) adjust-
ment and by extension, the greater the similarity between 
raw and corrected scores and their predictive validity. In 
other words, no maturity-bias does not require correction, 
no correction means unchanged scores, and unchanged 
scores imply unchanged prediction. Accordingly, since the 
sprint test is the only one displaying strong correlations 
with maturity status (see Table 5), it is probably the best 
candidate for raw and corrected scores that differ suffi-
ciently to show a noticeable change in predictive validity.  

The x-axis of Figure 1 suggests that a positive 
change in predictive validity depends on meaningful cor-
rection mechanism foundations (validity of the chosen ma-
turity indicator). An invalid maturity indicator is unlikely 
to generate a valid (meaningful) corrected score to make a 
valid prediction. Even though some literature shows that 
pragmatic maturity indicators are sufficient to economi-
cally inform coaches about youth player maturity status 
(Romann et al., 2017; Leyhr et al., 2020a; Malina et al., 
2012), serious validity concerns as a function of age and 
stage of maturation have also been raised (Malina and 
Kozieł, 2014; Teunissen et al., 2020; Parr et al., 2020). The 
lower the validity of the chosen maturity indicator (left 
side, Figure 1), the greater the loss of the correction and 
predictive process with respect to meaningful informative 
value. Since our sample characteristics (15 years-old, 
highly selective, more mature than same-aged non-ath-
letes) match the criteria when pragmatic maturity indica-
tors (especially the offset methods) become less accurate 
(Malina and Kozieł, 2014; Malina et al., 2015), the loss in 
meaningful informative/predictive value may be substan-
tial. Notably, the predictive validity of all the scores cor-
rected with a pragmatic maturity indicator tends to be 
slightly lower than that of the raw scores (see Table 6). 
Hence, if one is seeking a talent criterion that is expected 
to exhibit a noticeable increase in its predictive validity af-
ter applying the correction mechanism, it will probably be 
found among the ones that have been corrected with more 
objective and reliable methods (here, %RAH; or in general, 
skeletal age or real age at PHV; Malina, 2017).   

Against the backdrop of these reflections, our ex-
pectation to systematically create notably better predictive 
variables by simply applying a correction mechanism may 
have been unrealistic. Not all test variables were predis-
posed to a noticeable improvement in their predictive va-
lidity after applying the correction mechanism. In fact, 
combining the three determining factors (1. Has the varia-
ble some predictive validity? 2. How similar are corrected 

and uncorrected scores? 3. How meaningful is the founda-
tion of the correction procedure?), it appears that—among 
all test variables—the sprint test when corrected according 
to our most objective and reliable method (%RAH) was the 
only candidate where an improvement in predictive valid-
ity after the correction mechanism could be envisaged. Un-
surprisingly, it is also the only corrected variable with a 
(descriptively) better predictive validity than its raw ver-
sion (see Table 6). Although this predictive benefit remains 
trivial and non-significant, our data and reasoning suggest 
the closer to the top right corner of Figure 1, the more 
promising the application of a correction mechanism might 
be.   
 
Role of selection systems in which predictions have been 
made 
The selection system in use when we conducted our study 
might also be responsible for a lack of predictive improve-
ment in the multivariate context (research question 4; Ta-
ble 8). It is clear that the selection-related decision-making 
process depends primarily on evaluations of match perfor-
mance and subjective insights from coaches and scouts 
(Roberts et al., 2019; Christensen, 2009). Nevertheless, it 
seems reasonable to assume that coaches’ selection deci-
sions are based on available information—the players’ 
characteristics (Lath et al., 2021; Bergkamp et al., 2022; 
Lüdin et al., 2022). Thus, information systematically col-
lected (for selection recommendation purposes) or visually 
noticeable (in training and competition contexts) probably 
have more influence (in the sense of decision-making 
power) on coach selection decisions than uncollected or 
unnoticed information (Lüdin et al., 2022). This distinction 
is particularly important because raw motor performances 
are observed by coaches on a day-to-day basis and system-
atically tracked as part of the talent identification program 
in Switzerland (Schweizer Fussballverband, 2016; 
Fuchslocher et al., 2011), while the corrected scores were 
nonexistent during the study duration. In other words, it 
was simply impossible for corrected scores to influence the 
probability of survival of early and late maturing players in 
the elite-sport system. Contrastingly, through the (ma-
turity-biased) tracks raw performances left behind (the 
more mature, the better the raw scores, the better the im-
pression; Hancock et al., 2013; Hill et al., 2021; Cripps et 
al., 2016; Furley and Memmert, 2016), they could actively 
shape coaches’ opinions, selection chances, final decisions, 
and by extension, chances to access continuous profes-
sional support (Meylan et al., 2010; Malina et al., 2015). 
However, whether and the extent coaches were actually in-
fluenced by maturity-biased raw motor performances is not 
the focal point here. The core issue is raw scores, unlike 
corrected scores, had decision-making power. Unfortu-
nately, developmental research has no way of experimen-
tally manipulating the temporal component to compare 
whom coaches would select if they had access to sources 
of information not confounded by maturity status. Yet, it 
seems difficult to refute the hypothesis that maturity-biased 
and -unbiased performance considerations may lead to dif-
ferent conclusions about players and thus, to different se-
lection decisions (Lüdin et al., 2022). In turn, it suggests 
that raw scores had a perceptible (and non-compensable) 
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advantage over corrected scores. Is this advantage some-
how reflected statistically? We suggest it is—with more 
decision-making power, raw scores carried more (predic-
tive) information than corrected scores. 

The potential of a multivariate regression model to 
discriminate between future professionals and non-profes-
sionals (AUC) is expected to improve, the better the model 
fits the data (Steyerberg, 2019). Therefore, our attention 
should be focused on the extent, if at all, the correction 
mechanism leads to better-fitting models (Nagelkerke-R2). 
Typically, adding relevant information, such as additional 
predictors, to models leads to improvements in model fit 
(Field, 2018). The more information a statistical model can 
work with, the better it is expected to perform (Field, 
2018). For corrected scores, it is rather unfortunate because 
the correction mechanism does not add, but rather extracts 
everything related to biological maturation in each motor 
performance test (b + e; see Figure 2) (i.e., the correlation 
between corrected score and maturity status is equal to 
zero; research question 2). Figure 2 highlights three im-
portant points: 
1) Before applying the correction mechanism, the motor 

scores contained information related to maturity status—
the maturity and motor information overlap (in the sense 
of confounded; raw scores = a + b + e + f).  

2) After applying the correction mechanism, the maturity 
and motor information are separated—the motor perfor-
mance tests are free from this confounding influence 
(corrected scores = a + f).  

3) The dependent variable (career outcome: professional 
vs. non-professional) remains unchanged during the en-
tire process (a + b + c + d).  

If we accept these three points, we have to assume that the 
extent of change in the model fit (R2) after the correction 
process primarily relies on the correction-related absence 
of components b and e (however, no one is really interested 
in component e, because e has nothing to do with the career 
outcome). Accordingly, the bigger component b is (the 

more biological maturation embedded in raw scores has 
predictive validity), the more the motor scores lose their 
predictive power after applying the correction mechanism 
when compared with raw scores. Since existing literature 
generally acknowledges that early maturers are more likely 
to be selected in football academies than late maturers 
(Johnson et al., 2017), the size of component b is likely to 
be substantial. Thus, as long as the selection process is 
(even slightly) biased by the maturity status, the model fit 
of a regression model using corrected scores will theoreti-
cally always be worse than the one using the raw scores 
only. Does our data support this view? It seems so.  
Apart from one outlier (motor performance model cor-
rected with %RAH; R2

N = .28), which might just be an ex-
ample of capitalizing on chance, our model fits always de-
creased when using corrected (.19 ≤ R2

N ≤ .24) instead of 
raw test scores (R2

N = .24) to predict player career out-
comes. In concrete terms, the stronger the correlation be-
tween maturity indicator and adult performance level 
(component b in Figure 2; Table 4), the greater the decrease 
in model fit (Table 7). In line with this, the largest reduc-
tion we observed in model fit (R2

N = .19) after applying the 
correction mechanism was in the multivariate regression 
model using test scores corrected with maturity indicators 
having the highest correlation with adult performance level 
(%PAH, Table 4). Consequently, it suggests a methodolog-
ical artifact: Raw scores had a (methodological and non-
compensable) predictive advantage over corrected scores. 

To sum up, expecting the application of a correction 
mechanism to automatically improve predictions from 
multivariate regression models was unrealistic. It over-
looked existing selection system influence during the study 
duration, which produced a methodological artifact inflat-
ing raw score predictive power. The methodological arti-
fact can seemingly be avoided only if the career outcome 
(professional vs. non-professional; a + b + c + d in Figure 
2) emerges from an intervention manipulating the selection 
system during puberty (control vs. intervention group).

 
 

 
 
 

Figure 2. Variance components for the prediction of adult performance level (career outcome) illus-
trated with the sprint scores confounded by the attained percentage of the real adult height (%RAH). 
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In the control group, players are selected annually accord-
ing to their raw scores (without applying the correction 
mechanism). Players in the intervention group are selected 
annually according to their corrected scores (with applying 
the correction mechanism). Since the selection process is 
not affected by maturity-related selection errors in the in-
tervention group, the right players—the players with the 
highest (motor) potential—are chosen. Accordingly, on av-
erage, players selected from the intervention group are ex-
pected to reach a higher adult performance level than play-
ers selected from the control group. However, to imple-
ment such an intervention, clubs and federations would 
need to relinquish control over talent selection decisions 
and agree to use a unidimensional talent identification 
model based on motor performance, which is inconceiva-
ble and definitively outdated (Williams et al., 2020). 
Therefore, the approach adopted in this study may be the 
only way to empirically introduce and theoretically discuss 
potential benefits associated with corrected scores.  

 
Practical implications 
Taken together, our results indicate that correction mecha-
nism produce principally-sound corrected scores as valid 
as raw scores from a predictive point of view (Table 6 and 
Table 8). What practical implications can be drawn from 
this predictive equivalence, or rather, is a correction rec-
ommended or not? 
 
To correct or not to correct? That is the question  
Because coaches are encouraged to use scientific models 
in the talent identification process (Sieghartsleitner et al., 
2019b; Williams et al., 2020) and corrected scores are 
available, it becomes necessary to reflect upon what kind 
of scientific test scores (raw or corrected) should be relied 
on. From a methodological perspective, it can be argued 
that compared with raw scores, corrected scores have lim-
ited utility since more work from implementing a correc-
tion mechanism is needed for the same overall predictive 
output. This violates the principle of parsimony in building 
models (Field, 2018), which “tells us to remove what is un-
necessary” (Sober, 1981, p. 145) and speaks against their 
application.  

Although one can see the glass as half empty (same out-
put for more work), one can also see it as half full (same 
output, but one fewer problem). In the words of Karl Pop-
per (2000):  

A new hypothesis is only taken seriously if it ex-
plains at least everything that was successfully ex-
plained by its predecessor, and if; in addition, it either 
promises to avoid particular errors of the old hypothe-
sis or makes new predictions—where possible, testable 
predictions. (p. 39) 

Accordingly, from a critical rationalist point of view, cor-
rected scores should be favored because they predict at 
least everything successfully predicted by their predeces-
sors (raw scores). In addition, they promise to avoid the 
acknowledged problem of maturity-biased inter-individual 
performance comparisons in scientific models and make 
new testable predictions (for example, see Figure 1). By 
correcting, and thus changing each player’s scores, the cor-
rection mechanism changes the position of each player on 

any kind of talent continuum based on one of several sum-
mative approaches (z-scores addition, Turner, 2014; 
Souza-Lima et al., 2020; weighted scoring system, 
Fuchslocher et al., 2011; Höner et al., 2015; regression, 
Sieghartsleitner et al., 2019a). Those who previously (and 
erroneously) did not emerge as candidates for selection 
could receive this status after applying a correction mech-
anism (and vice versa). At the same time, it may increase 
the acceptance of scientific forecasting in practice. Indeed, 
the more our models avoid mispositioning players on the 
talent continuum due to early or late maturation, the more 
the models will be taken seriously.  
 
Correction recommendations are in vogue: similar ra-
tionale, different implementation objects  
Interestingly, on some level the correction mechanism is 
not drastically different from the bio-banding strategy, 
which has garnered a reputation among applied sports sci-
entists in recent years (Cumming et al., 2017; Cumming et 
al., 2018a; Reeves et al., 2018a; Towlson et al., 2021a). 
Both approaches “correct” something to solve a maturity-
related problem for one of the complementary parts of the 
talent identification process, that is coaches and scientific 
models (Lath et al., 2020; Sieghartsleitner et al., 2019b). 
Bio-banding “corrects” the playing environment and al-
lows coaches to observe how good each player would be if 
they played in an environment without maturity-related 
(dis-) advantages (Cumming et al., 2017; Malina et al., 
2019; Rogol et al., 2018). It is supposed to enable coaches 
to better detect talented players. The correction mechanism 
seeks to achieve a similar goal. It corrects the test scores 
mathematically and allows scientific talent identification 
models to estimate how good each player would be in each 
test, if he was as biologically developed as the others. In 
turn, it is supposed to help scientific models better detect 
talented players in the future.  

Furthermore, from a talent development perspec-
tive, just as bio-banding changes the behaviors and experi-
ences of each player on the field (Cumming et al., 2018a), 
the correction mechanism would not be impervious to side 
effects. Specifically, according to Vallerand and Losier’s 
(1999) integrative analysis of motivation, each (social) 
context influences the basic psychological needs (e.g., per-
ceived competence; Deci and Ryan, 1985), which in turn 
increase or undermine one’s intrinsic motivation and lead 
to a host of consequences (e.g., dropout intention, negative 
or positive emotions; Balish et al., 2014; Pelletier et al., 
2001; Sarrazin et al., 2002). Thus, a context which is char-
acterized by comparisons based on corrected (instead of 
raw) scores might help late maturers build confidence in 
their ability (satisfaction of need for competence), which in 
turn might increase their intrinsic motivation and decrease 
their possible dropout intentions. In contrast, corrected 
scores might threaten early maturers’ experience of com-
petence, leading to less intrinsic motivation and negative 
emotions such as frustration, dissatisfaction, and fear of 
disappointing significant others. Therefore, players should 
not be left alone with their corrected scores, rather coaches 
have to explain beforehand the meaning behind such cor-
rection (in the sense of individualized feedback). In partic-
ular, correction-related feedback should make late             
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maturers realize that their feeling incompetent might be un-
warranted and that in all likelihood they will catch up with 
the others. Inversely, the correction-related feedback 
should make early maturers realize that their feeling com-
petent might be, to some extent, unjustified and that they 
need to continue to work upon a particular aspect of their 
game, because in all likelihood the other players will catch 
up. In this respect, implementing a correction mechanism 
responds to a recent call for strategies creating learning 
contexts that encourage early and late maturing boys to de-
velop more adaptative psychological skill sets (Cumming 
et al., 2018b). It is worth noting that such maturity-unbi-
ased contexts may change players’, parents’ and coaches’ 
expectations regarding achievement. Theoretically, these 
expectations are not devoid of consequences, since they 
may actively shape talent development paths through self-
fulfilling prophecies, such as the Pygmalion, the Galatea 
and the Golem effect (when higher/lower other-/self-ex-
pectations lead to higher/poorer career outcomes; Hancock 
et al., 2013; Leonardo Filho, 2016; Babad et al., 1982; 
Rosenthal and Jacobson, 1968).  

To sum up, similar to bio-banding strategy (Cum-
ming et al., 2017), corrected scores provide a new piece of 
information and mirror reality in a restructured, more nu-
anced way (Larochelambert et al., 2022; Abbott et al., 
2021b). They refine judgment and might affect players’ 
personality and expectations. As a result, corrected scores 
may also impact career outcomes. Given their perceived 
highly subjective usefulness for maturity-unbiased, inter- 
and intra-individual performance comparisons, and equiv-
alent predictive validity, we recommend the use of cor-
rected scores to complement current talent identification 
and development methods. In this context, one of the 
strengths of maturity-based correction mechanisms is their 
application in all sports, which responds to a recent call for 
scientific solutions with an impact beyond a single sport 
(Abt et al., 2022). 

 
Limitations 
There are four noteworthy study limitations. First, we fo-
cused on isolated skills and abilities in the tests we used 
(see Table 1). Thus, we could not completely capture the 
unpredictable and complex nature of football. For instance, 
the test assessing dribbling skill, not unlike a slalom around 
stationary markers, places a high reliance on the player’s 
ability to accelerate. Unfortunately, it misses some aspects 
of the cognitive, perceptual and motor skills that are essen-
tial to dribbling the ball in match conditions (McDermott 
et al., 2015; Ali, 2011). The same kind of criticism applies 
to the other tests. However, limited ecological validity was 
the price to pay to maximize closeness to practice—i.e., to 
investigate the predictive validity of the specific tests used 
in German and Swiss talent identification programs (Höner 
et al., 2015; Schweizer Fussballverband, 2016). Further-
more, while it is true that an increase in the complexity of 
the test battery should improve (ecological or predictive) 
validity, it could at the same time impair the reliability of 
the tests (see reliability-validity dilemma; Slomp and Fuite, 
2004; Höner and Roth, 2002). Indeed, we had serious con-
cerns that less reliable tests would provide less trustworthy  
 

corrected scores. 
Second, we considered biological maturation as a 

finite and linear resource, which can only have a unidirec-
tional effect on motor performances (the more mature, the 
better). Yet clearly our conceptualization was reductionist 
and failed to consider possible problems, such as maturity-
related altered motor control also known as “adolescent 
awkwardness,” emerging at certain points during develop-
ment (Quatman-Yates et al., 2012). Indeed, some athletes 
experience performance drops due to accelerated periods 
of growth, which could not be captured or considered in 
our correction procedure. Therefore, it remains unclear to 
what extent it is legitimate to linearize the phenomenon of 
maturation, which is primarily regarded as non-linear (Bo-
eyer et al., 2020) and to correct its influence on talent cri-
teria with linear methods. Other modelling approaches may 
be adopted in future studies (e.g., curvilinear; Abbott et al., 
2021b; Abbott et al., 2021a).  

Third, we interpreted results guided by the assump-
tion that %RAH was a highly valid indicator of the somatic 
biological maturation of the players. However, its validity 
in our study is in question. We did not directly measure 
somatic biological maturation; we asked about it in a fol-
low-up survey or collected it through transfermarkt. Both 
data collection methods are not without problems. Unlike 
other studies in talent research (Leyhr et al., 2020a), we as-
sumed players did not overestimate their current adult 
height. Thus, we decided not to adjust self-reported adult 
height according to Epstein’s equation (Epstein et al., 
1995). We believe these adjustments would have had lim-
ited bearing on our study findings since they are generally 
small in nature. Transfermarkt relies on the principle of 
crowd wisdom to generate information (Peeters, 2018). 
Consequently, even though it provides reliable and precise 
information about players (Prockl and Frick, 2018), the va-
lidity of its data depends on the crowd’s wisdom. To ascer-
tain validity, we calculated the correlation between self-re-
ported adult height and adult height found on transfermarkt 
for a sub-sample of 12 players for whom data were availa-
ble (rs = 0.99). In our case, the crowd seemed wise and our 
assumptions about %RAH are valid. However, future stud-
ies should reflect on the necessity of Epstein’s formula in 
the context of talent research and further examine the mar-
gin of error associated with adult height indicated on trans-
fermarkt.  

Fourth, our sample was (a) highly selected and (b) 
relatively small. It resulted in a reduced dispersion of ma-
turity status, which may have deflated, for example, the re-
ported relationships between maturity status and motor 
performances. Our small sample size meant we could not 
split the dataset into exploratory and validation subsamples 
without violating important requirements of statistical 
analysis. For this reason, we evaluated present models us-
ing only the exploratory dataset and failed meeting current 
standards of machine learning practice (Till et al., 2016). 
Consequently, our regression models are only internally 
valid and may not generalize to the population (Steyerberg 
et al., 2010). Considering these four limitations, our results 
seem trustworthy, yet need replication.  
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Future directions 
On a methodological level, further research could attempt 
to reproduce our findings with different operationalizations 
of maturity status, such as with Khamis-Roche method 
(Khamis and Roche, 1994), sexual and/or skeletal maturity 
indicators (Malina et al., 2015), different sample character-
istics, like those where pragmatic maturity indicators are 
more accurate (Malina and Kozieł, 2014), different correc-
tion mechanisms (e.g., curvilinear instead of linear; Abbott 
et al., 2021b or size- and/or body-mass-related instead of 
maturity-related; Valente dos Santos et al., 2014a; Cunha 
et al., 2011), or other possibly confounded talent criteria, 
like psychological skill (Cumming et al., 2012; Cumming 
et al., 2018b). It would also be interesting to extend the cor-
rection mechanism to further variables confounding the in-
put-output operations of additive-linear scientific models 
and explore how the long-term predictive validity re-
sponds. Potential candidates are relative (chronological) 
age (Leyhr et al., 2021; Romann et al., 2018; Votteler and 
Höner, 2014) or training age (Johnston and Baker, 2020; 
Guimarães et al., 2019).  

We invite sports physiologists to further disentangle 
the direct, indirect, and mediating effects of biological mat-
uration on performance in motor tests (e.g., body size de-
scriptors, such as stature and body mass, not only predict 
maturity status, but also motor performance, Valente dos 
Santos et al., 2012; Valente dos Santos et al., 2014b). 
Sports psychologists might be interested in determining 
whether knowledge of corrected scores results in changes 
in player evaluation (as this is the case for knowledge of 
maturity status on shirt number; Lüdin et al., 2022), player 
personality (e.g., basic psychological needs, football-re-
lated self-concept, self-efficacy, motivational characteris-
tics), support from parents or coaches, or team role and sta-
tus (Cumming et al., 2012; Schmidt et al., 2015; Cumming 
et al., 2006; Eisenmann et al., 2020).  

The correction mechanism also has applications in 
training science, namely as complement to developmental 

fitness curves (Myburgh et al., 2020; Owen et al., 2022; 
Till et al., 2022; Cumming, 2018) for (a) profiling strengths 
and weaknesses and (b) monitoring performance develop-
ment during puberty. Performance profiling is meant to 
guide coaches so they better tailor training to player needs 
(Till et al., 2018; Eisenmann et al., 2020). Figure 3 shows 
a fictitious (late-maturing) player who appears to have a 
raw score-based major sprinting weakness. After correc-
tion (in red), it becomes clear that the weakness is not prob-
lematic. His corrected sprint performance is above average. 
However, without information provided by the correction 
mechanism, strength and conditioning coaches might in-
vest time for sprint training, which could be better utilized 
elsewhere. Regarding the issue of monitoring, strength and 
conditioning coaches struggle to separate training effects 
from maturation effects after training intervention, such as 
strength training (van Hooren and Ste Croix, 2020; Moran 
et al., 2017; Till et al., 2018). By making pre-post compar-
isons with corrected rather than uncorrected scores, 
coaches better capture true training effects and better un-
derstand athlete progress (Eisenmann et al., 2020; Till et 
al., 2018).  

Finally, on a more general note and beyond the 
realm of youth elite sports, the correction mechanism could 
be applied in school sport settings. Indeed, knowing ma-
turity status influences physical activity patterns and motor 
performance, which, in turn, influences personality devel-
opment and creates motivational basis for lifelong sports 
participation (Cumming et al., 2020; Cumming et al., 2012; 
Conzelmann and Schmidt, 2020), is it fair or expedient 
when physical education teachers evaluate students ac-
cording to their raw performance during puberty (the more 
mature the adolescent, the better the performance; Nevill 
et al., 2021; Vist Hagen et al., 2022)?  

Thus, a series of new research questions and options 
for practical application arise with available corrected 
scores. 

 
 

 
 

 
 

Figure 3. Fictitious performance profile (z-scores) of a player before and after the application of 
the correction mechanism (raw scores = blue; corrected scores = red; correction based on 
%RAH). Coding of sprint, agility and dribbling performance has been reversed so that a higher 
value corresponds to better performance.  
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Conclusion 
 
Our study confirmed (1) that maturity status influenced 
some motor talent criteria and (2) maturity-based correc-
tion mechanisms worked. Contrary to our expectations, 
corrected scores (3) considered one by one (univariate pre-
diction) or (4) in combination (multivariate prediction) 
were not found to be better predictors of who became a 
professional athlete six years later than uncorrected scores. 
In our opinion, predictive equivalence does not imply the 
futility of correction mechanisms (more work for the same 
output), but it underlines their potential importance (same 
output, one fewer problem) and the need to revise our cor-
rection-related expectations according to four factors: ini-
tial predictive validity of considered motor variables, va-
lidity of chosen maturity indicators, initial maturity-bias, 
and analyzed cohort selection system. Even though the rec-
ommendation to use maturity-based correction mecha-
nisms seems theoretically legitimate, its empirical basis 
(from a predictive point of view for talent identification) 
remains to be established.  
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Key points 
 
 In summative approaches to identify talent, correc-

tion mechanisms are needed, and they can be suc-
cessfully implemented. In this study, however, they 
could not improve predictions of future performance 
level (compared with raw scores). 

 We do not interpret raw and corrected score equiva-
lent predictions as a sign of correction mechanism 
futility (more work for the same output), instead we 
see them as an invitation to take corrected scores se-
riously into account (same output, one fewer prob-
lem).  

 Expectations related to corrected scores must be re-
vised according to four factors: initial predictive va-
lidity; initial maturity bias of considered variables; 
validity of the maturity indicator; and current selec-
tion system.  

 The added value of corrected scores for talent iden-
tification and development, such as personality de-
velopment, environmental support, performance 
profiling or monitoring, currently resides on rather 
theoretical grounds. 
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