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Abstract 
The onset of fatigue disrupts the functioning of the autonomic 
nervous system (ANS), potentially elevating the risk of life-
threatening incidents and impairing daily performance. Previous 
studies mainly focused on physical fatigue (PF) and mental fa-
tigue (MF) effects on the ANS, with limited knowledge concern-
ing the influence of physical-mental fatigue (PMF) on ANS func-
tionality. This study aimed to assess the immediate impact of 
PMF on ANS function and to compare its effects with those of PF 
and MF on ANS function. Thirty-six physically active college 
students (17 females) without burnout performed 60-min cycling 
exercises, AX-Continuous Performance Task (AX-CPT), and cy-
cling combined with AX-CPT to induce PF, MF, and PMF re-
spectively. Subjective fatigue levels were measured using the 
Rating of Perceived Exertion scale and the Visual Analog Scale-
Fatigue. Heart rate variability was measured before and after each 
protocol to assess cardiac autonomic function. The proposed tasks 
successfully induced PF, MF, and PMF, demonstrated by signif-
icant changes in subjective fatigue levels. Compared with base-
line, PMF decreased the root mean square of successive differ-
ences (RMSSD) between normal heartbeats (P < 0.001, d = 0.50), 
the standard deviation of normal-to-normal RR intervals (SDNN) 
(P < 0.01, d = 0.33), and the normalized high-frequency (nHF) 
power (P < 0.001, d = 0.32) while increased the normalized low-
frequency (nLF) power (P < 0.001, d = 0.35) and the nLF/nHF 
ratio (P < 0.001, d = 0.40). Compared with MF, PMF significantly 
decreased RMSSD (P < 0.001, η2 = 0.431), SDNN (P < 0.001, η2 
= 0.327), nLF (P < 0.01, η2 = 0.201), and nHF (P < 0.001, η2 = 
0.377) but not the nLF/nHF ratio. There were no significant dif-
ferences in ΔHRV (i.e., ΔRMSSD, ΔSDNN, ΔnLF/nHF, ΔnLF, 
and ΔnHF), heart rate, and training impulse between PF- and 
PMF-inducing protocols. Cognitive performance (i.e., accuracy) 
in AX-CPT during the PMF-inducing protocol was significantly 
lower than that during the MF-inducing protocol (P < 0.001, η2 = 
0.101). PF and PMF increased sympathetic activity and decreased 
parasympathetic activity, while MF enhanced parasympathetic 
activity. 
 
Key words: Physical fatigue, mental fatigue, physical-mental fa-
tigue, heart rate variability, cardiac autonomic activity. 

 
 
Introduction 
 
Fatigue is a phenomenon that dysregulates physiological 
systems, including the autonomic nervous system (ANS) 
(Tanaka et al., 2011; Yoshiuchi et al., 2004). Heart rate var-
iability (HRV), reflecting ANS activity, serves as a poten-
tial biomarker for fatigue (Escorihuela et al., 2020; Matuz 

et al., 2022; Ni et al., 2022). Compared to individuals with 
lower levels of physical activity, fatigue may exhibit dis-
tinctive HRV characteristics in physically active individu-
als, attributed to their unique physiological adaptations and 
response patterns to physical stress (Hegde et al., 2018). 
Physically active individuals present a prime model for 
studying these changes as their HRV responses are indica-
tive of their ANS's adaptability to stress and resilience to 
fatigue (Marcora et al., 2009). Understanding these re-
sponses in a physically active population can provide in-
sights into optimizing training regimens and recovery strat-
egies (Seiler et al., 2007). 

In addition, Fatigue-induced alterations in ANS ac-
tivity increase the risk of life-threatening events and de-
crease performance in daily activities (Marcora et al., 2009; 
Okutucu et al., 2011). Fatigue affects the balance between 
the sympathetic nervous system (SNS) and the parasympa-
thetic nervous system (PNS) (Castillo-Aguilar et al., 2021; 
Hebisz et al., 2020; Matuz et al., 2021; Mizuno et al., 2011) 
by altering the activation of brain regions that contribute to 
sympathetic-parasympathetic balance (e.g., the dorsal an-
terior cingulate cortex) (Critchley et al., 2003; Tanaka et 
al., 2015). Thus, assessing the effect of different fatigue 
types on ANS activity is essential to improve autonomic 
function, reduce fatigue-related morbidity and mortality, as 
well as optimizing recovery strategies. 

Fatigue is classified as physical fatigue (PF), mental 
fatigue (MF), and physical-mental fatigue (PMF) (Kume et 
al., 2017), which are induced by different factors and exer-
cise loads, including prolonged physical activity, demand-
ing cognitive tasks, and insufficient sleep (Dutheil et al., 
2012; Maynard et al., 2021; Russell et al., 2020; Schmitt et 
al., 2013). Furthermore, different types of fatigue may af-
fect ANS activity differently (András et al., 2021; Dobbs 
et al., 2020; Qin et al., 2021). For instance, compared with 
the control (absence of fatigue), MF changes PNS parame-
ters by increasing the root mean square of successive dif-
ferences (RMSSD) between normal heartbeats (Matuz et 
al., 2021; Qin et al., 2021), while PF has the opposite effect 
(Dobbs et al., 2020; Hebisz et al., 2020). However, previ-
ous studies focused primarily on the effects of PF and MF 
on the ANS (Castillo-Aguilar et al., 2021; Dobbs et al., 
2020; Hebisz et al., 2020; Matuz et al., 2021; Mizuno et al., 
2011), and little is known about the effects of PMF on ANS 
function. Although MF and PF affect the ANS by stimulat-
ing or inhibiting PNS activity, respectively, the activation 

Research article 



Chen et al. 

 
 

 

807

of the PNS and SNS is not linearly correlated. Therefore, 
the effects of PMF on the regulation of ANS activity need 
to be further explored. 

This study evaluated the effects of PMF on ANS 
function and compared the effects of PF, MF, and PMF on 
ANS activity. Thus, models of these types of fatigue in 
healthy younger adults were constructed. ANS activity was 
assessed by measuring HRV before and after the induction 
of fatigue. We hypothesized (1) that the induction of PF, 
MF, and PMF resulted in a corresponding increase in sub-
jectively fatigue levels respectively (e.g., physical fatigue 
without mental fatigue, mental fatigue without physical fa-
tigue, and physical-mental fatigue) and (2) that different 
types of fatigue have a different effect on ANS activity. 
Specifically, PMF and PF leads to high level of sympa-
thetic activity while MF leads to high level of parasympa-
thetic activity. 

 

Methods 
 

Participants 
Forty-five physically active individuals from Beijing Sport 
University voluntarily participated in the study. Partici-
pants were included if they engaged in moderate to vigor-
ous physical activity exceeding six hours weekly (Gianola 
et al., 2017), and their physical activity habits were as-
sessed using the International Physical Activity Question- 

naire (IPAQ) (Craig et al., 2003). The average weekly 
physical activity was 14.47 ± 3.23 h, spanning 4.27 ± 1.46 
days, with a mean MET value of 4919.06 ± 3021.50 per 
week. Average sedentary and sleep durations were 6.13 ± 
1.93 hours and 7.45 ± 0.78 h, respectively. All participants 
gave written informed consent. The exclusion criteria were 
subjects with injuries that affected the implementation of 
fatigue-inducing protocols and subjects with burnout. Nine 
participants were excluded, and 36 (17 females) were in-
cluded in the study (Table 1). This study was approved by 
the Human Subjects Review Committee of Beijing Sport 
University (2021004H), and all procedures were conducted 
according to the Declaration of Helsinki. 
 

Experimental protocols 
Participants underwent four separate visits, each compris-
ing a specific fatigue-inducing protocol (PF, MF, or PMF) 
followed by a peak power output assessment. The order of 
protocols, depicted in Figure 1, was interspersed with a 
minimum seven-day interval to facilitate complete recov-
ery. This study was conducted from December 2020 
through June 2021. To gauge subjective physical and men-
tal fatigue levels, the Rating of Perceived Exertion (RPE) 
scale and the Visual Analog Scale-Fatigue (VAS-F) were 
employed. Prior to each session, participants were advised 
to avoid strenuous physical activities and to refrain from 
consuming alcohol or caffeine for 24 hours. 

 

           Table 1. Characteristics of the study participants. 
Gender n Age (years) Height (cm) Weight (kg) Peak power (W) 60% of peak power (W) 
Female 17 23.23 ± 2.36 164.46 ± 4.70 55.65 ± 6.80 154.71 ± 30.44 92.82 ± 18.26 
Male 19 23.87 ± 1.82 177.73 ± 6.32 74.40 ± 5.94 216.32 ± 37.15 129.74 ± 22.30 

 
 

 
 
 

Figure 1. Experimental design. (A) Maximal cycling test. WU, warm-up. (B-D) Flowchart of the tasks 
that induced physical fatigue, mental fatigue, or both types of fatigue. 
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                           Figure 2. AX-continuous performance task. 
 

 

Fatigue protocols 
PF-inducing protocol: 60-min cycling exercise 
The 60-min cycle ergometer exercise included three 20-
min blocks with a 10-s interval between blocks, aimed at 
assessing to the subjective levels of both physical and men-
tal fatigue (Figure 1). The load was 60% of the peak power 
and remained constant throughout the protocol. Before the 
experiment, the peak power output of each participant was 
measured using a cycle ergometer (Ergoselect 100, Ergo-
line GmbH, Bitz, Germany). The protocol included 1) a 
warm-up (cycling for 3 min at 30 W and 70 ± 5 rpm) and 
2) initial loads of 50 W (males) and 30 W (females) with 
an increase at a rate of 20 W per 2 min until the test ended 
or the participant interrupted the test for any reason. The 
test was terminated when at least two of the following con-
ditions were met: 1) HR ≥ 85% × maximum heart rate 
(measured using the formula: 208 - [age × 0.7]); (2) RPE ≥ 
7; and (3) failure to maintain a speed of 70 ± 5 rpm for 
more than 10 s. The peak power output and the loads used 
to induce PF and PMF in both sexes are shown in Table 1. 
 
MF-inducing protocol: 60 min AX-CPT 
MF was induced using the 60-min AX-Continuous Perfor-
mance Task (AX-CPT), which was generated and imple-
mented using E-prime 2.0 (Sharpsburg, USA). The task 
consisted of three 20-min blocks with a 10-s interval be-
tween blocks based on four uppercase letters (A, B, X, Y). 
The task was presented on a 23-inch monitor (Lenovo 
L12364A, 1920 × 1080 pixels, 60 Hz refresh rate). Before 
the experimental test, the participants performed a 3.5-min 
familiarization task (60 trials) consisting of 42 target pairs 
(70%, AX), six valid cue-invalid probe pairs (10%, AY), 
six invalid cue-valid probe pairs (10%, BX), and six invalid 
cue-invalid probe pairs (10%, BY). Each block of the ex-
perimental task (total of 340 trials) consisted of 238 AX 
(70%), 34 AY (10%), 34 BX (10%), and 34 BY (10%). The 
letters appeared on the screen randomly. One trial of AX-
CPT is presented in Figure 2. Participants were instructed 
to press the target button (left arrow) as soon as the X probe 
appeared after observing the A cue; while observing any 
other letter pair, the participants pressed the right arrow 
button as soon as possible. Responses to probe stimuli were 
recorded with a time limit of 1500 ms. 
 

PMF-inducing protocol: AX-CPT combined with cy-
cling exercise 
PMF was induced by simultaneously performing AX-CPT 
and cycling exercises, the same protocols used to induce 
MF and PF, respectively. 
 
Outcome measures 
HRV and HR 
HRV was assessed before and immediately after each task  

(Figure 1). Participants were asked to sit still for at least 5 
min before the test. Then, HRV data were recorded contin-
uously for 3 min in a sitting position using a cardiac chest 
band (Movesense OP174, Suunto, Vantaa, Finland) con-
nected to an app (Firstbeat Sports Coach, Jyväskylä, Fin-
land) running on a mobile device (iPad, Apple) for moni-
toring and recording HR throughout the experiment (Chen 
et al., 2020; Wu et al., 2020). Recordings were conducted 
in a quiet, temperature-controlled room. Participants were 
seated comfortably and asked to breathe naturally with 
their eyes closed. 
 

Learning Burnout Scale 
This scale was developed by Lian et al. (2005) based on the 
Maslach Burnout Inventory and consists of 20 items that 
evaluate college student burnout in three domains: dejec-
tion (eight items), improper behavior (six items), and re-
duced personal accomplishment (six items). Items were 
rated on a Likert scale ranging from one (strongly disagree) 
to five (strongly agree). Learning burnout and its dimen-
sions were measured as mean scores with a cut-off point of 
three. 
 

RPE Borg CR-10 
Subjective PF was assessed using the Borg CR-10 on a 
scale from 0 to 10 (Borg, 2010) and was defined as an RPE 
score of at least 5 (Ribeiro et al., 2008). Participants were 
instructed to complete the RPE scale four times: at baseline 
and immediately after each block (Figure 1). 
 

Visual Analog Scale-Fatigue (VAS-F) 
The level of MF was measured using the VAS-F (Veness 
et al., 2017), which is a 100-mm horizontal line with the 
marks ‘none’ (not fatigued at all) and ‘maximum’ (ex-
tremely fatigued) on the left and right, respectively. Partic-
ipants were instructed to mark the line based on their sub-
jective MF. The VAS score was the distance between the 
marked point and the left endpoint, and a VAS-F value of 
at least 50 mm was defined as the presence of MF (Dernis-
Labous et al., 2003). 
 
Data processing 
AX-CPT performance 
Cognitive performance in AX-CPT was recorded automat-
ically by measuring the accuracy and reaction time for four 
probe pairs (AX, AY, BX, and BY). The average accuracy 
for these probe pairs every 5 min was measured as cogni-
tive load and mental status during MF- and PMF-inducing 
tasks. 
 

HRV and HR 
Cardiac autonomic nervous function was evaluated using 
the time and frequency domains of HRV. HRV measure-
ments were analyzed utilizing the Firstbeat system 
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(https://sports.firstbeat.com/, Jyväskylä, Finland). The 
time domain consisted of the standard deviation of all RR 
intervals (SDRR) and the RMSSD in RR intervals. The fre-
quency domain consisted of low-frequency spectral power 
(LF; 0.05 - 0.15 Hz), high-frequency spectral power (HF; 
0.15 - 0.4 Hz), and the LF/HF ratio. The normalized units 
for LF and HF served as indices of autonomic regulation in 
the participants, with the following formulas:  
 

nLF (nu) = LF (ms2) / total power (ms2) × 100 
nHF (nu) = HF (ms2) / total power (ms2) × 100 

 

To assess the effect of fatigue types on cardiac autonomic 
activity, RMSSD and nHF were utilized as primary out-
comes of parasympathetic activity (Laborde et al., 2017), 
and SDNN served as a secondary outcome (Yılmaz et al., 
2018). The LF is indicative of both sympathetic and para-
sympathetic activity, with a strong propensity towards 
sympathetic activity  (Hayano and Yuda, 2021). Addition-
ally, the nLF/nHF ratio reflects sympathovagal balance 
(Laborde et al., 2017). 

Physiological responses to fatigue-inducing proto-
cols were evaluated by measuring HR. The effect of PF- 
and PMF-inducing protocols on internal and external load, 
respectively, was assessed by measuring training impulse 
(TRIMP) every 5 min using the formula: 
 

TRIMP = t × ΔHR × 0.64e (b × ΔHR) 

 

where t is training duration (min), ∆HR is (HR - HRrest) / 
(HRmax - HRrest), e is the base of Napierian logarithms, and 
b is 1.67 for women and 1.92 for men (Sanders et al., 2017). 
HRmax and HR were considered the maximal and average 
HR and were measured every 5 min. 
 

Statistical analysis 
A power analysis was conducted using G*Power 3.1 (pa-
rameters: one-way repeated measure ANOVA, within fac-
tors, f = 0.25, P = 0.05, power = 0.90, number of groups: 3, 
number of measurement points: 4) yielding a sample size 
of 30 participants. For the present study, 36 participants 
were recruited and included in the final analyses. 

Data were expressed as means ± standard deviations 
(M ± SD). Statistical analyses were conducted using SPSS 
version 25.0 (SPSS Inc., Chicago, USA). The normality of 
the distribution of continuous variables was assessed using 
the Shapiro-Wilk test. 

The effects of PMF on ANS activity were examined 
using a paired-samples t-test. The dependent variables 
were the outcomes of HRV (RMSSD, SDNN, nLF/nHF, 
nLF, and nHF). This research undertook a stratified analy-
sis to investigate the differential impacts of fatigue on au-
tonomic nervous system activity across genders. 

The effects of PMF and PF on ANS activity were 
compared using two-way analysis of variance (ANOVA). 
The dependent variable encompassed the percentage 
changes in HRV parameters (ΔRMSSD, ΔSDNN, ΔnLF, 
ΔnHF, and ΔnLF/nHF), with fatigue type and gender serv-
ing as independent variables. RPE was included as a co-
variate because fatigue might affect ANS activity. Simi-
larly, VAS-F (subjective level of mental fatigue) was in-
cluded as a covariate to analyze differences in the effects 
of MF- and PMF-inducing protocols. 

The effectiveness of the fatigue models (PF, MF, 
and PMF) was evaluated by one-way repeated-measures 
ANOVA. The dependent variables of the models were RPE 
and VAS-F. The effects of cycling exercises alone and AX-
CPT combined with cycling on heart rate and TRIMP, and 
the effects of AX-CPT alone and AX-CPT combined with 
cycling on cognitive task performance (i.e., accuracy) were 
assessed using a two-way repeated-measures ANOVA. 

Statistical significance was defined as P < 0.05. The 
effect size was calculated using Cohen’s d index and clas-
sified as small (d = 0.2), medium (d = 0.5), or large (d = 
0.8) (Jacob, 1992). 
 
Results 
 
The participants completed all study visits. There were no 
significant differences in subjective fatigue levels (RPE 
and VAS-F) and HRV parameters (SDNN, RMSSD, 
nLF/nHF, nLF, and nHF) between the three protocols at 
baseline. PF- and PMF-inducing protocols significantly in-
creased RPE scores (F = 169.463, P < 0.001, η2 = 0.939; F 

= 222.803, P < 0.001, η2 = 0.953) and led to extreme phys-
ical exertion (Figure 3A). MF- and PMF-inducing proto-
cols significantly increased VAS-F scores (F = 56.171, P < 
0.001, η2 = 0.836; F = 140.819, P < 0.001, η2 = 0.928) and 
caused severe mental fatigue (Figure 3B). These results 
suggested that the PF, MF, and PMF models were effective. 
The peak power and experimental load (60% of the peak 
power) were 216.32 ± 37.15 W and 129.74 ± 22.30 W for 
males and 154.71 ± 30.44 W and 92.82 ± 18.26 W for fe-
males (Table 1). 
 

 

 
 

Figure 3. A. Subjective levels of fatigue. RPE, Rating of Per-
ceived Exertion scale; B. VAS-F, Visual Analog Scale-Fa-
tigue. 
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Effects of PMF on ANS activity 
The paired-samples t-test showed that PMF significantly 
decreased the RMSSD, SDNN, and nHF, while increasing 
nLF and the nLF/nHF ratio compared to baseline (Table 2). 
However, there were no significant differences observed in 
the nLF, nHF, and the nLF/nHF ratio for male participants, 
nor in the SDNN for female subjects. 
 

Effects of PF and PMF on ANS activity and kinematic 
measures 
An investigation into the influence of fatigue type (PMF vs. 
PF) and gender (male vs. female) on HRV parameters was 
performed using a two-way ANOVA. M and SD for 
ΔRMSSD, ΔSDNN, ΔnLF, ΔnHF, and ΔnLF/nHF, are pre-
sented in supplementary Table 3. A significant main effect 
of gender was found on ΔnHF (F = 4.288, P < 0.05, η2 = 
0.079), but not others (see supplementary Table 4). For kin-
ematic parameters, two-way repeated-measures ANOVA 
indicated no significant interactions between fatigue type 
and exercise block for average HR (F = 1.744, P = 0.060; 
see Figure 4A) and TRIMP (F = 0.929, P = 0.511; Figure 
4B). Heart rate (F = 43.245, P < 0.001, η2 = 0.888) and 
TRIMP (F = 12.048, P < 0.001, η2 = 0.692) increased grad-
ually during PF- and PMF-inducing tasks, without signifi-
cant difference between these tasks (F = 1.600, P = 0.210; 
F = 1.814, P = 0.182). 
 

Effects of MF and PMF on ANS activity and cognitive 
task performance 
In examining the effects of fatigue type (PMF and MF) and 
gender (male and female) on HRV paraments, a two-way 
ANOVA was conducted. There was a significant main ef-
fect for fatigue type on ΔRMSSD (F = 20.809, P < 0.001, 
η2 = 0.431), ΔSDNN (F = 13.361, P < 0.001, η2 = 0.327), 
but not ΔnLF (F = 3.107, P = 0.083), ΔnHF (F = 1.840, P 
= 0.180) and ΔnLF/nHF (F = 2.493, P = 0.119). The main 
effect for gender as well as the interaction effect between 
fatigue type and gender were not significant. Post-hoc anal-
yses indicated that ΔRMSSD and ΔSDNN were signifi-
cantly lower in the PMF model than in the MF model (Fig-
ure 5). Two-way repeated-measures ANOVA indicated no 
significant interactions between fatigue types and exercise 
block for cognitive task performance (F = 1.064, P = 0.388) 
(Figure 4C).  Cognitive performance (i.e., accuracy in the  
 

AX-CPT) decreased gradually during MF- and PMF-
inducing protocols (F = 5.971, P < 0.001, η2 = 0.531) and 
was lower in the latter (F = 7.643, P < 0.01, η2 = 0.101). 
 

 

 
 

Figure 4. Kinematic measurements and cognitive perfor-
mance during tasks that induced physical fatigue (PF), men-
tal fatigue (MF), or both types of fatigue (PMF). (A) Training 
impulse (TRIMP) during tasks that induced PF or PMF. (B) 
Heart rate (HR) during tasks that induced PF, MF, or PMF. 
(C) Cognitive performance during an AX-continuous perfor-
mance task that induced MF or PMF. 

Table 2. Effects of PMF on HRV parameters. 
 Gender Baseline Fatigue t P d 

RMSSD (ms) 
Total 33.26 ± 12.38 18.03 ± 10.33 5.22 0.000 0.50 
M 31.42 ± 13.35 16.76 ± 9.44 3.80 0.002 0.49 
F 35.72 ± 11.03 19.73 ± 11.61 3.44 0.006 0.52 

SDNN (ms) 
Total 51.46 ± 13.59 38.33 ± 12.58 3.41 0.002 0.33 
M 52.40 ± 15.04 34.38 ± 9.92 3.05 0.012 0.48 
F 50.72 ± 12.86 41.43 ± 13.89 1.85 0.087 0.21 

nLF (nu) 
Total 55.75 ± 13.01 66.08 ± 7.59 -3.57 0.002 0.35 
M 61.79 ± 9.13 66.86 ± 7.24 -1.65 0.124 0.19 
F 49.21 ± 13.73 65.08 ± 8.17 -3.48 0.005 0.52 

nHF (nu) 
Total 40.03 ± 9.57 30.36 ± 9.86 3.47 0.002 0.32 
M 37.27 ± 9.46 30.65 ± 10.88 2.15 0.050 0.25 
F 43.80 ± 9.81 29.97 ± 8.77 2.78 0.020 0.44 

nLF/nHF (%) 
Total 126.39 ± 78.59 211.72 ± 113.29 -4.29 0.000 0.40 
M 155.65 ± 85.37 209.07 ± 120.47 -1.94 0.073 0.21 
F 95.04 ± 56.78 214.56 ± 109.53 -4.46 0.001 0.61 

RMSSD, root mean square of successive differences (RMSSD) in RR intervals; SDNN, standard deviation of normal-
to-normal RR intervals; nLF, normal power of the low-frequency band (0.04–0.15 Hz); nHF, normal power of the high-
frequency band (0.15-0.4 Hz); M, male; F, female. 
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                 Table 3. Descriptive statistics for the effects of PF, MF, and P&MF on HRV parameters. 

Gender Measures 
PF MF P&MF 

M SD M SD M SD 

Male  
(N = 19) 

ΔRMSSD -51.98 28.10 8.15 29.80 -56.75 21.00 
ΔSDNN -21.11 29.35 38.38 32.84 -31.07 29.96 
ΔnLF 20.36 29.05 16.96 39.67 19.53 24.52 
ΔnHF -17.77 29.67 -6.87 36.01 -16.79 29.10 
ΔnLF/nHF 84.44 129.98 64.19 128.03 94.76 136.53 

Female  
(N = 17) 

ΔRMSSD -62.45 15.03 28.44 21.32 -56.90 16.85 
ΔSDNN -45.47 26.66 50.27 34.23 -17.02 26.33 
ΔnLF 29.37 38.25 19.74 39.46 39.04 29.29 
ΔnHF -35.79 24.32 -1.61 36.94 -34.26 23.58 
ΔnLF/nHF 140.90 141.10 60.54 135.68 151.86 137.92 

Total  
(N = 36) 

ΔRMSSD -62.21 24.46 17.74 33.74 -56.81 21.29 
ΔSDNN -28.29 37.36 43.44 34.06 -25.45 28.86 
ΔnLF 24.86 33.68 18.28 43.93 27.34 27.71 
ΔnHF -26.78 28.18 -4.39 36.02 -23.78 34.30 
ΔnLF/nHF 112.67 136.35 62.47 129.80 117.60 137.19 

                    PF: physical fatigue, MF: mental fatigue (MF), P&MF: both types of fatigue. 

 
  Table 4. Two-way ANOVA analysis for fatigue type (PF vs. PMF) and gender (male vs. female) on HRV parameters. 

Measures Source df F P η2 

ΔRMSSD 

Fatigue type 1 0.78 0.38 0.02 
Gender 1 2.82 0.10 0.05 
Fatigue type × Gender 1 2.73 0.11 0.05 
Error 67    

ΔSDNN 

Fatigue type 1 0.14 0.71 0.00 
Gender 1 1.16 0.29 0.02 
Fatigue type × Gender 1 1.28 0.31 0.14 
Error 67    

ΔLF 

Fatigue type 1 0.28 0.60 0.01 
Gender 1 2.73 0.10 0.05 
Fatigue type × Gender 1 0.37 0.55 0.01 
Error 67    

ΔHF 

Fatigue type 1 0.01 0.92 0.00 
Gender 1 4.29 0.04 0.08 
Fatigue type × Gender 1 0.00 0.96 0.00 
Error 67    

ΔLF/HF 

Fatigue type 1 0.08 0.78 0.00 
Gender 1 2.26 0.14 0.04 
Fatigue type × Gender 1 0.00 0.99 0.00 
Error 67    

 
 

 
 

Figure 5. Effect of mental fatigue (MF), and physical and mental fatigue (PMF) on HRV parameters. 

 
Discussion 
 
This study evaluated the effects of PF, MF, and PMF on 
HRV, marking the first to assess these specific fatigue 
types on autonomic nervous system (ANS) activity. Our 

tasks induced distinct fatigue states, confirmed by subjec-
tive, physiological, and cognitive measures. Regarding 
ANS activity, PMF closely resembles PF by enhancing car-
diac sympathetic activity while diminishing parasympa-
thetic activity. PMF decreased RMSSSD, SDNN more 
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strongly than MF, indicating that different fatigue types in-
fluenced cardiac ANS activity differently. 
 
Effectiveness of protocols 
Performing a cycling exercise at 60% of the peak power 
output for 60 min strongly increased RPE and marginally 
increased VAS-F, suggesting the successful induction of 
PF without MF (VAS-F < 50), in line with a previous study 
(Davidow et al., 2020), wherein prolonged high-intensity 
intermittent running induced PF without MF in rugby un-
ion players. In addition, we observed a linear increase in 
HR and TRIMP, suggesting that an increase in physical 
workload was consistent with the time-on-protocol. 

Performing 60-min AX-CPT induced MF without 
PF (RPE < 5), evidenced by a strong increase in subjective 
scores (VAS-F) and a significant decrease in cognitive task 
performance (accuracy). Previous research has shown that 
60-min AX-CPT can effectively induce mental fatigue in 
healthy college students (VAS > 60) without physical fa-
tigue (VAS < 40) (Loch et al., 2020). Moreover, partici-
pants’ responses became gradually faster as accuracy de-
creased; this effect was also observed during the execution 
of the PMF-inducing protocol, consistent with previous 
studies (Delliaux et al., 2019; Thomson et al., 2009). De-
creased accuracy may be due to a loss of motivation and 
low levels of self-efficacy due to MF (Loch et al., 2020) 
and an increase in wrong responses due to short reaction 
times (Thomson et al., 2009). 

AX-CPT combined with cycling exercise strongly 
induced PMF, demonstrated by increased subjective PF 
and MF, increased workload consistent with the time-on-
task, and decreased cognitive task performance. The effec-
tiveness of this model in inducing PM and MF has been 
validated previously (Barzegarpoor et al., 2020; Haji Agha 
Bozorgi et al., 2021). For instance, Barzegarpoor et al. 
(Barzegarpoor et al., 2020) found that PF and MF levels 
increased significantly (RPE > 16, NASA-TLX > 60) in 
male recreational cyclists after 45-min AX-CPT combined 
with cycling exercises. 
 
Effects of fatigue on cardiac autonomic function 
The effect of different types of fatigue on cardiac auto-
nomic activity was assessed by measuring HRV. The re-
sults showed that PF remarkably decreased RMSSD, 
SDNN, nHF, and nLF, suggesting decreased parasympa-
thetic activity. Meanwhile, the increase in the nLF/nHF ra-
tio, an indicator of sympathovagal balance, suggests higher 
sympathetic activity and lower parasympathetic activity 
(Michael et al., 2017), in line with a previous study (Dobbs 
et al., 2020) showing a significant decrease in the time and 
frequency domains at 30 min after high-volume back 
squats. In addition, cycling exercise increases HR linearly 
because of higher sympathetic activity to maintain physical 
performance (Borresen and Lambert, 2008). Long-term 
physical exercise-induced PF increases cardiac sympa-
thetic activity and parasympathetic withdrawal. 

Regarding MF, the results showed that SDNN, nLF, 
and nLF/nHF were increased 5 min after 60-min AX-CPT, 
suggesting that increased cardiac parasympathetic activity 
is a feature of MF. Moreover, the slight decrease in HR in 
each exercise block during the MF-inducing task indicates 

an increase in cardiac parasympathetic modulation 
(Hallman et al., 2019), in line with previous studies (Matuz 
et al., 2021; Qin et al., 2021). The previous study reported 
that healthy college students had a significant increase in 
parasympathetic activity (lnRMSSD, pNN50, lnHF, lnLF, 
and SD2) after completing a 1.5-h dual 2-back task (Matuz 
et al., 2021). However, Delliaux et al. (Delliaux et al., 
2019) found that most HRV paraments were remarkedly 
decreased (a significant decrease in time domain measures 
and a slight increase in the LF/HF ratio) during a 1-h task-
switching task, indicating either decreased parasympa-
thetic activity or increased sympathetic activity. This in-
consistency might be because HRV was measured under 
fatigue conditions at different time points (i.e., during or 
after cognitive task completion). 

Consistent with our hypothesis, our results showed 
that fatigue induced by physical and cognitive load had a 
markedly different effect on cardiac autonomic function. 
More specifically, PF increased sympathetic activity and 
decreased parasympathetic activity, while MF exhibited 
the opposite effect. These observations were corroborated 
by variations in HR following and after different types of 
stimulation (i.e., physical and mental workloads). In com-
parison to the baseline, HR exhibited a significant increase 
during physical load and PF scenarios, but a minor de-
crease during mental load and MF scenarios, suggesting 
that different types of load-induced fatigue elicit unique 
patterns of ANS activation. There changes in HR and ANS 
might be related to the activation of the central autonomic 
network, which controls sympathetic-parasympathetic bal-
ance (Tanaka et al., 2015), such as the dorsal anterior cin-
gulate cortex (ACC) controlling sympathetic output 
(Critchley et al., 2003). Previous studies have shown that 
higher parasympathetic activity under MF is closely asso-
ciated with decreased activity in the medial prefrontal cor-
tex and ACC (Caseras et al., 2008; Lorist et al., 2005). In 
contrast, Liu et al. (Liu et al., 2007) found that PF increased 
activity in ipsilateral sensorimotor, prefrontal, orbitofrontal, 
and anterior cingulate regions. Another explanation for this 
finding is that moderate-high-intensity physical exercise 
increases sympathetic activity as a result of arterial barore-
flex control and the secretion of epinephrine and norepi-
nephrine, increasing HR to meet the demands of working 
muscles (maintain physical performance), increase periph-
eral blood flow (for heat dissipation), and maintain the 
function of other organs (Hebisz RG et al., 2020). How-
ever, acetylcholine release is increased during cognitive 
task performance (Passetti et al., 2000); this neurotransmit-
ter binds to muscarinic receptors and augments parasym-
pathetic activity, leading to a slight decrease in HR (Shaffer 
et al., 2014). 

Regarding PMF, the 60-min AX-CPT combined 
with cycling exercises significantly decreased RMSSD, 
nLF, and nHF and significantly increased the nLF/nHF ra-
tio, suggesting that PMF increased cardiac sympathetic ac-
tivity and decreased parasympathetic activity. Nonetheless, 
changes in HRV paraments were similar between PF and 
PMF, which was unexpected but in line with a previous 
study (Garde et al., 2002). This result may be related to the 
regulation of sympathetic and parasympathetic nerves. Par-
asympathetic nerves on the sinoatrial node, atrial myocar- 
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dium, and atrioventricular node are activated at rest, while 
sympathetic nerves are activated during physical activity 
(Borresen and Lambert, 2008). Sympathetic activation 
triggers the release of norepinephrine and epinephrine 
(Shaffer et al., 2014), increasing HR and cardiac contrac-
tility to maintain exercise performance. Therefore, sympa-
thetic nerves may play a dominant role during moderate-
high intensity physical activity, regardless of whether cog-
nitive tasks are performed. Sympathetic drive persists for 
some time despite parasympathetic activation to facilitate 
recovery from medium-high intensity exercises in which 
sympathetic activity predominates (Borresen and Lambert, 
2008). 

The effects of MF and PMF on ΔRMSSD, ΔSDNN, 
ΔnLF, ΔnHF, and ΔnLF/nHF were distinct, suggesting that 
these protocols influenced cardiac ANS activity differently. 
PMF increased sympathetic activity and decreased para-
sympathetic activity, while MF had the opposite effect. 
One possible explanation for this effect is that sympathetic 
activity predominates during the dual task to maintain 
physical performance. In addition, participants tend to 
maintain exercise performance at the expense of cognitive 
performance (accuracy), and the latter was significantly 
lower during the dual task than during AX-CPT. 
 
Effects of gender on cardiac autonomic function 
The study yielded a notable observation that autonomic 
nervous activity differed among participants based on gen-
der, which was in line with the previous studies (Voss et 
al., 2015; Woo and Kim, 2015). It was observed that males 
exhibited a less significant reduction in nHF power in re-
sponse to fatigue when compared to females. While the 
precise reasons for this discrepancy are challenging to as-
certain, it may be attributed to inherent physiological dif-
ferences between genders, notably in hormonal responses 
(Voss et al., 2015). Such differences could potentially in-
fluence cardiac autonomic regulation and stress adaptation. 
 
Strengths and limitations 
This study analyzed the effects of PF and MF on cardiac 
autonomic activity under rigorously controlled conditions, 
including protocol duration and respiratory control during 
HRV measurements. These findings elucidated how differ-
ent types of fatigue affected cardiac autonomic activity and 
showed that HRV was useful for assessing fatigue. For 
workers with physically and mentally demanding jobs, in-
vestigating the association between ANS and PMF is criti-
cal to maintaining job performance and reducing fatigue-
related morbidity from work-related musculoskeletal dis-
orders (Mehta and Agnew, 2011). 

This study has some limitations. First, since the 
study implemented three distinct fatigue-inducing proto-
cols, measuring HRV during task execution under identical 
control conditions (i.e., sitting still for at least 5 min) was 
unfeasible. Second, the effects of long-term fatigue on 
HRV were not assessed. Third, the effects of fatigue on 
ANS function may be affected by fatigue-inducing tasks 
not encountered in real-life situations. Therefore, the asso-
ciation of HRV with ANS function and real-life long-term 
fatigue needs to be further researched. 

 

Conclusion 
 
Our findings suggest that PF and PMF increased sympa-
thetic activity and decreased parasympathetic function. 
Further, MF increased parasympathetic activity more 
strongly than PF and PMF. 
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Key points 
 
 The study examines how combined physical and mental fa-

tigue (PMF) affects the autonomic nervous system, con-
trasting its impact with physical (PF) or mental fatigue (MF) 
alone. 

 PMF significantly reduced parasympathetic and increased 
sympathetic nervous system markers. 

 PMF had a greater impact on autonomic function than MF 
alone, similar to PF. 

 Cognitive abilities were more adversely affected by PMF 
than by MF alone. 
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