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Abstract 
OpenPose-based motion analysis (OpenPose-MA), utilizing deep 
learning methods, has emerged as a compelling technique for es-
timating human motion. It addresses the drawbacks associated 
with conventional three-dimensional motion analysis (3D-MA) 
and human visual detection-based motion analysis (Human-MA), 
including costly equipment, time-consuming analysis, and re-
stricted experimental settings. This study aims to assess the pre-
cision of OpenPose-MA in comparison to Human-MA, using 3D-
MA as the reference standard. The study involved a cohort of 21 
young and healthy adults. OpenPose-MA employed the Open-
Pose algorithm, a deep learning-based open-source two-dimen-
sional (2D) pose estimation method. Human-MA was conducted 
by a skilled physiotherapist. The knee valgus angle during a drop 
vertical jump task was computed by OpenPose-MA and Human-
MA using the same frontal-plane video image, with 3D-MA serv-
ing as the reference standard. Various metrics were utilized to as-
sess the reproducibility, accuracy and similarity of the knee val-
gus angle between the different methods, including the intraclass 
correlation coefficient (ICC) (1, 3), mean absolute error (MAE), 
coefficient of multiple correlation (CMC) for waveform pattern 
similarity, and Pearson’s correlation coefficients (OpenPose-MA 
vs. 3D-MA, Human-MA vs. 3D-MA). Unpaired t-tests were con-
ducted to compare MAEs and CMCs between OpenPose-MA and 
Human-MA. The ICCs (1,3) for OpenPose-MA, Human-MA, and 
3D-MA demonstrated excellent reproducibility in the DVJ trial. 
No significant difference between OpenPose-MA and Human-
MA was observed in terms of the MAEs (OpenPose: 2.4° 
[95%CI: 1.9 - 3.0°], Human: 3.2° [95%CI: 2.1 - 4.4°]) or CMCs 
(OpenPose: 0.83 [range: 0.99 - 0.53], Human: 0.87 [range: 0.24 - 
0.98]) of knee valgus angles. The Pearson’s correlation coeffi-
cients of OpenPose-MA and Human-MA relative to that of 3D-
MA were 0.97 and 0.98, respectively. This study demonstrated 
that OpenPose-MA achieved satisfactory reproducibility, accu-
racy and exhibited waveform similarity comparable to 3D-MA, 
similar to Human-MA. Both OpenPose-MA and Human-MA 
showed a strong correlation with 3D-MA in terms of knee valgus 
angle excursion. 
 
Key words: Artificial intelligence, Human pose estimation, land-
ing, marker-less, human detection, 3D motion analysis. 

 
 
Introduction 
 
Motion analysis serves as a valuable clinical assessment 
tool, playing a crucial role in functional evaluation, treat-
ment assessment, and sports injury risk screening 

(Bonnette et al., 2020; Harato et al., 2022; Akbari et al., 
2023). It finds application in various scenarios, such as gait 
analysis in clinical settings (Chester et al., 2005; Baker, 
2006) and drop vertical jump (DVJ) tests in sports (Ford et 
al., 2007; Harato et al., 2022). The DVJ test, in particular, 
has proven effective in predicting anterior cruciate liga-
ment (ACL) injuries in the knee (Hewett et al., 2005), 
which are significant traumatic sports injuries, particularly 
among female athletes (Noyes et al., 2005; Peebles et al., 
2020). The DVJ test is extensively employed as a screening 
tool for sports injuries and for evaluating the efficacy of 
preventive exercises across various sports domains (Noyes 
et al., 2005; Hewett et al., 2010; Bonnette et al., 2020). Mo-
tion analysis has recently gained prominence as an indis-
pensable assessment tool for musculoskeletal disorder 
treatment and sports injury prevention. 

To date, optical camera-based three-dimensional 
(3D) motion analysis systems have been considered the 
most accurate and reliable methods (Everaert et al., 1999; 
Chester et al., 2005). However, they come with certain lim-
itations. Firstly, they necessitate expensive equipment and 
software, making them financially burdensome. Secondly, 
the experimental and measurement space is often re-
stricted, which poses constraints on the range of motion 
that can be analyzed. Moreover, technical expertise is re-
quired to operate and analyze data from these systems, 
making them time-consuming. Another drawback of 3D 
motion analysis is the manual placement of markers on the 
subject’s skin to serve as anatomical landmarks. Even 
slight deviations in marker placement can lead to signifi-
cant errors in joint angle calculations, as it affects the set-
ting of joint coordinate systems (Piazza and Cavanagh, 
2000; Cappozzo et al., 2005). The accuracy of the assess-
ment relies heavily on the examiner’s skill, necessitating 
well-trained individuals to perform these measurements. 
Consequently, despite its usefulness, the widespread adop-
tion of 3D motion analysis in clinical and sports settings is 
challenging. 

As an alternative to three-dimensional (3D) motion 
analysis, two-dimensional (2D) motion analysis is fre-
quently utilized. This method involves analyzing joint an-
gles projected onto a single plane, typically the sagittal 
and/or frontal plane, using general video images. Due to 
the convenience of capturing videos using digital cameras 
or smartphones, 2D motion analysis is widely employed in 
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clinical (Ishida et al., 2023) and sports settings (Rabin et 
al., 2018). However, extracting kinematic data from video 
images in 2D motion analysis is a time-consuming process 
prone to human error. Each frame of video footage requires 
manual identification of joint center points through human 
detection, which involves substantial time and repetitive 
work. For instance, analyzing three trials of a typical 10-
second video (at a 60 Hz sampling frequency) would entail 
manually identifying human joint points for 1800 video 
frames. This process alone would take at least 300 minutes, 
assuming one frame is processed every 10 seconds. More-
over, human detection procedures may introduce errors, 
variabilities, and biases (Hensley et al., 2022). Conse-
quently, while 2D motion data can be easily captured on 
video, it presents limitations in clinical applications due to 
time-consuming data processing and potential errors in hu-
man detection. 

In recent years, artificial intelligence (AI) has made 
remarkable advancements, particularly in deep learning us-
ing machine learning technology, significantly enhancing 
the accuracy of feature detection. OpenPose, an open-
source framework, enables real-time 2D multi-person key-
point detection and posture estimation (Cao et al., 2019). It 
is widely recognized as one of the leading AI-based motion 
analysis methods (Li et al., 2021; Yamamoto et al., 2021; 
Fan et al., 2022; Ino et al., 2023; Ishida et al., 2024). Open-
Pose has demonstrated excellent reliability (ICCs = 0.92 - 
0.96) and significant correlations compared to 3D motion 
analysis systems (R2 = 0.26 - 0.83) in assessing lower limb 
joint angles and trunk angle during a double-leg squat (Ota 
et al., 2020). Hence, AI-based automated motion analysis 
holds potential in addressing the limitations of traditional 
3D and 2D motion analysis methods concerning cost, time, 
efficiency, and accuracy. However, the specific error range 
associated with high-velocity movements such as the drop 
vertical jump (DVJ) has yet to be reported in the literature 
(D’Antonio et al., 2021; Ota et al., 2021; Ota et al., 2020). 
Furthermore, it remains unclear whether OpenPose-based 
motion analysis (OpenPose-MA) is more accurate than 
conventional human-based motion analysis (Human-MA). 
If OpenPose-MA proves to be as accurate as or more accu-
rate than Human-MA, it can provide a significant solution 
for enhancing the data processing efficiency of conven-
tional 2D motion analysis. Therefore, the objective of this 
study was to compare the accuracy of OpenPose-MA with 
that of Human-MA and establish the validity of OpenPose-
MA using three-dimensional motion analysis (3D-MA) as 
a reference. We hypothesize that OpenPose-MA and Hu-
man-MA will exhibit comparable levels of accuracy within 
an acceptable error range. 
 
Methods 
 
Participants 
A total of 21 healthy young participants were enrolled in 
this study, consisting of 10 men and 11 women. The par-
ticipants had an average age of 20.7 ± 1.0 years, height of 
165.2 ± 10.6 cm, mass of 59.6 ± 12.1 kg, and body mass 
index of 21.6 ± 2.6 kg/m2. None of the participants had any 
medical conditions affecting physical activity or 
trunk/lower-extremity disorders/injuries within the 12 

months preceding the study. In a pilot study involving 
seven participants, the effect size was calculated from the 
mean error and standard deviation (SD) of both OpenPose-
MA and Human-MA, yielding a value of 0.65. Based on 
this effect size (dz), an alpha error level of 0.05, and a sta-
tistical power of 0.80, the sample size required to detect a 
significant difference using a paired t-test was determined 
to be 21 (calculated using G*Power software ver. 3.1.9.2) 
(Faul et al., 2007; Faul et al., 2009). Hence, a total of 21 
participants were recruited for the study. The Institutional 
Review Board of Faculty of Health Sciences of Hokkaido 
University approved this study (IRB protocol number: 19-
70-1). Written informed consent was obtained from each 
participant prior to their involvement in the study. 
 
Task 
The bilateral drop vertical jump (DVJ) task was selected as 
the task for this study due to its use as a screening test for 
anterior cruciate ligament (ACL) injury risk (see Figure 1) 
(Hewett et al., 2005). During the DVJ task, participants be-
gan on top of a 30 cm box with their feet positioned shoul-
der-width apart. They were instructed to drop off the box 
and execute a maximal vertical jump with both arms raised, 
simulating a basketball rebound. A successful DVJ was de-
fined as a drop-off without jumping, a bilateral landing, an 
immediate subsequent jump, and maintaining vertical bal-
ance throughout the trial. The DVJ task has been widely 
employed to assess lower-extremity kinematics and kinet-
ics, demonstrating high within-session reliability with a 
mean intraclass correlation coefficient of 0.90 and 95% 
confidence intervals (CI) ranging from 0.86 to 0.95 (Ford 
et al., 2007). Each participant performed three successful 
trials of the DVJ task after completing a self-selected 
warm-up and several practice trials. The trials were rec-
orded for subsequent analysis. 
 

 

 
 
 

Figure 1. Bilateral drop vertical jump (DVJ) trial. All partic-
ipants were given the same instructions: ''Drop off the box 
and immediately jump as high as you possibly can''.  
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Measurement system and equipment 
For both OpenPose-MA and Human-MA, video image 
data were acquired using a high-speed digital video camera 
(Bonita Video 720C, Vicon Motion Systems Ltd., Oxford, 
England) with a sampling frequency of 120 Hz. The cam-
era was positioned perpendicular to the frontal plane of the 
knee joint, 30 cm above the floor, at the same height as the 
surface of the 30-cm box, and 300 cm away from the land-
ing point. It was securely mounted on a separate floor plate 
to minimize any vibrations resulting from the impact of 
landing. In all trials, a 30 cm box (40 cm × 80 cm) and two 
force plates (40 cm × 60 cm each) were arranged side by 
side. The landing zone for the DVJ was defined as within 
40 cm forward of the box edge (Figure 1). During the re-
cording, the camera captured anterior views of the partici-
pants' foreheads to ensure accurate visualization of the mo-
tion. 

To ensure the validity of the measurements, simul-
taneous 3D motion analysis (3D-MA) was conducted 
alongside the video measurements using the Vicon Nexus 
2.10 system (Vicon Motion Systems Ltd., Oxford, Eng-
land). The Vicon motion system consisted of 14 optical 
cameras (Eight MX T10-S, Six Vero v2.2; Vicon Motion 
Systems Ltd., Oxford, England) with a sampling frequency 
of 120 Hz and two force plates (OR6, Advanced Mechani-
cal Technology Inc., Watertown, NY, USA) with a sam-
pling frequency of 1200 Hz, one for each foot during land-
ing. Following the Vicon Plug-in-Gait marker placement 
protocol, a total of 34 reflective markers were attached to 
specific anatomical landmarks on each participant. These 
markers were placed on the 7th cervical vertebra, 10th tho-
racic vertebra, clavicle, sternum, right scapula, and bilater-
ally on the front head, back head, shoulder, elbow, thumb-
side wrist, pinkie side wrist, head of the second metacarpal, 
anterior superior iliac spine, posterior superior iliac spine, 
lateral thigh, lateral and medial femoral epicondyle, lateral 
shank, lateral and medial malleolus, second metatarsal 
head, and calcaneus. Before the motion analysis trials, a 
static trial was conducted with each participant assuming a 
neutral standing position. This trial helped align the partic-
ipants with the global laboratory coordinate system and es-
tablish their local joint coordinates. Aligning the local joint 
coordinates with the standing position of each participant 
allowed for better control of inter-participant variation in 
anatomical alignment, particularly the zero-position valgus 
alignment, during the subsequent motion analysis trials. 
 
OpenPose 
OpenPose is a framework for real-time multi-person 2D 
pose estimation, utilizing a deep learning approach (Cao et 
al., 2019). This system detects and estimates the posture of 
individuals in images and movies, identifying major hu-
man body joints in two-dimensional space. OpenPose em-
ploys an architecture based on Convolutional Neural Net-
works (CNNs). The model learns the spatial relationships 
between different parts of the human body based on the 
concept of "Part Affinity Fields" (PAF). PAFs function as 
vector fields indicating the direction of body parts, used for 
accurately linking different human body parts. The model 
consists of a multi-stage CNN that simultaneously            

performs detection of body key points and the association 
between the key points. The training process of OpenPose 
is designed using a large volume of labeled image data, en-
abling the model to learn the key points of the human body 
and their interrelations. Training initially focuses on key 
point detection, followed by learning the PAFs to capture 
the spatial relations between these key points. Training 
data utilized publicly available large-scale human pose da-
tasets, such as the MPII human multi-person dataset 
(Andriluka et al., 2014) and the COCO key point challenge 
dataset (Lin et al., 2014). These datasets include images 
from various scenarios containing real-world challenges 
like crowds, scale variation, occlusions, and contacts. 
 

 

 
 

Figure 2. Lens distortion correction by VICON Nexus version 
of 2.10. using calibration information from the VICON sys-
tem. Upper figure: pre-correction, lower figure: post-correc-
tion. 
 

Data processing 
The OpenPose-MA tool, specifically OpenPose version 
1.7.0 (Cao et al., 2017; Hidalgo et al., 2019), was utilized 
to estimate the positions of joint centers in each frame of 
the video. In the case of Human-MA, a skilled analyst vis-
ually determined the positions of the hip, knee, and ankle 
joint centers using Frame-Dias V software (DKH Inc., To-
kyo, Japan). The OpenPose results were blinded to the an-
alyst responsible for this Human-MA. Both OpenPose-MA 
and Human-MA relied on the same video images captured 
from a single plane. To eliminate the impact of lens distor-
tion resulting from the video camera, video distortion was 
corrected using spatial calibration information obtained 
from the 3D-MA system (Figure 2). Lens distortion          
correction was conducted by calibrating the optical motion 
analysis cameras using a T-shaped wand with optical mark-
ers. A high-speed camera synchronized to the motion     
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analysis system was calibrated simultaneously. Each cali-
bration was used to capture 2,000 and 1,000 frames of the 
wand, respectively. Finally, using the spatial information 
obtained during calibration, any distortion in the video 
footage was corrected using the Vicon Nexus 2.10 system 
(Vicon Motion Systems Ltd., Oxford, England), and then 
exported as a video file. This correction enabled the extrac-
tion of identification errors exclusively for both OpenPose-
MA and Human-MA in this study. The trajectories of joint 
positions were subjected to filtering using a fourth-order 
Butterworth low-pass filter with zero-lag and a cutoff fre-
quency of 6 Hz. On the two-dimensional plane obtained, 
coordinates for the hip, knee, and ankle joint centers were 
estimated, and subsequently, the knee valgus angle was 
calculated using equation (1). In this equation, θ represents 
the knee valgus angle, while (x1, y1) and (x2, y2) denote the 
coordinates of the hip joint and ankle joint, respectively, 
with the knee joint serving as the origin (Figure 3). The 
neutral position of the knee valgus-varus angle was defined 
as zero, with the negative direction indicating a valgus an-
gle. 
 

 

 
 

 

 
 

In the reference assessment using 3D-MA, the coordinates 
of the hip, knee, and ankle joint centers were determined 
based on the marker coordinates obtained from the markers 
placed on the participants' body (Plug-in Gait Reference 
Guide, 2016). The method for calculating the knee valgus 
angle using these joint center coordinates was the same as 
the one employed in the video analysis. The trajectories of 

the markers were also filtered using a zero-lag, fourth-or-
der Butterworth low-pass filter with a cutoff frequency of 
6 Hz, similar to the filtering applied in the video analysis. 
This ensured consistency in the processing of the marker 
data and facilitated a reliable comparison between the 
video analysis and the reference 3D-MA. We also esti-
mated the center of gravity (COG) using the Plug-in Gait 
method (Plug-in Gait Reference Guide, 2016). These data 
were processed using the Vicon Nexus 2.10 software (Vi-
con Motion Systems Ltd., Oxford, England). 
 
Data analysis and statistics 
The analysis interval for knee valgus angles spanned from 
the moment of initial contact to leaving the ground after 
landing on the DVJ. The landing phase was identified 
based on the vertical component of the ground reaction 
force, which reached or exceeded 20N. Within this inter-
val, the following parameters were calculated for knee val-
gus angles: 1) knee valgus angle at initial contact, 2) knee 
valgus angle at the lowest COG after landing, and 3) ex-
cursion of the knee valgus angle from initial contact to the 
lowest COG. The method used to calculate the excursion 
was to subtract the valgus angle at initial contact from the 
knee valgus angle at the lowest COG. These parameters 
were calculated separately for males and females, consid-
ering the reported sex-based differences in DVJ landing 
patterns (Peebles et al., 2020; Kawaguchi et al., 2021). To 
verify the reproducibility of knee valgus angle across the 
DVJ trials, the intraclass correlation coefficient (ICC) (1, 
3) and its 95% confidence intervals (95%CI) were calcu-
lated for OpenPose-MA, Human-MA and 3D-MA. The 
ICC is interpreted as follows (Fleiss, 1986): ICC ≥ 0.75 
(excellent), 0.4 ≤ ICC < 0.75 (fair to good), ICC < 0.4 
(poor). To assess the accuracy of OpenPose-MA and Hu-
man-MA compared to 3D-MA, Pearson’s correlation coef-
ficient was calculated between the knee valgus angles ob-
tained from OpenPose-MA/Human-MA and those ob-
tained from 3D-MA. Additionally, the mean absolute error 
(MAE) with a 95% CI was calculated for both OpenPose-
MA and Human-MA using the 3D-MA results as a refer-
ence. The interpretation of absolute error (AE) was catego-
rized into different ranges: AE ≤ 2° (good accuracy), 2° < 
AE ≤ 5° (acceptable accuracy), 5° < AE ≤ 10° (tolerable 
accuracy), and AE > 10° (unacceptable accuracy) (McGin-
ley et al., 2009; Bessone et al., 2022), based on previous 
studies. Furthermore, the coefficient of multiple correla-
tion (CMC) was analyzed to compare the waveform pattern 
similarity (Ferrari et al., 2010a) between OpenPose-
MA/Human-MA and 3D-MA. CMC values were inter-
preted as follows: 0.65 - 0.75 (moderate), 0.75 - 0.85 
(good), 0.85 - 0.95 (very good), and 0.95 - 1 (excellent) 
(Ferrari et al., 2010b). A two-way analysis of variance 
(ANOVA) was performed to evaluate the effects of meas-
urement method, sex, and their interaction on the knee val-
gus angle. Unpaired t-tests were conducted to compare 
MAEs, Pearson's correlation coefficients, and CMCs be-
tween OpenPose-MA and Human-MA. The statistical sig-
nificance level was set at p < 0.05, and IBM SPSS Statistics 
version 22.0 (IBM Corporation, Armonk, NY, USA) was 
used for the statistical analyses. 
 

(1) 

Figure 3. Lens distortion correction by VICON Nexus version
 of 2.10. using calibration information from the VICON sys-
tem. Upper figure: pre-correction, lower figure: post-correc-
tion. 
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Results 
 
Accuracy 
The ICCs (1,3) and their 95%CIs for each knee valgus an-
gles during DVJ are shown in Table 1. The ICCs (1,3) for 
OpenPose-MA were 0.86 to 1.00 (p < 0.001), Human-MA 
were 0.88 to 1.00 (p < 0.001) and 3D-MA were 0.91 to 1.00 
(p < 0.001), indicating "excellent" re-producibility of the 
DVJ trial (Table 1). The analysis revealed no significant 
differences in knee valgus angles during landing among 
OpenPose-MA, Human-MA, and 3D-MA. No interaction 
effect was detected between the measurement method and 
sex. However, a significant gender difference was ob-
served, with female participants exhibiting significantly 
larger knee valgus angles at initial contact, at the lowest 
COG, and excursions than male participants (Table 2). 
Strong and significant correlations were found between 
OpenPose-MA/Human-MA and 3D-MA for each knee val-
gus angle during landing, as indicated by high Pearson’s r 
correlation coefficients (Human-MA: 0.883 - 0.978, Open-
Pose-MA: 0.846 - 0.966) and no significant differences 
were found at landing phase or knee valgus excursion (Fig-
ure 4). Regarding the mean absolute errors (MAEs) of knee 
valgus angles, no significant difference was found between 

OpenPose-MA and Human-MA (Table 3). The MAE (95% 
CI) for OpenPose-MA throughout the landing phase was 
2.4° (1.9° to 3.0°), while for Human-MA, it was 3.2° (2.1° 
to 4.4°). These results indicate that both OpenPose-MA 
and Human-MA exhibit comparable levels of accuracy in 
estimating knee valgus angles during the DVJ landing 
phase. The MAEs for both methods fell within the range of 
good accuracy, suggesting that they provide reliable esti-
mations of knee valgus angles. 
 
Pattern of kinematics 
The mean CMCs (SD) between Human-MA and 3D-MA, 
as well as OpenPose-MA and 3D-MA, were calculated 
separately for males and females (Table 4). No significant 
difference was found between OpenPose-MA and Human-
MA in terms of CMCs. Qualitatively, the average wave-
form patterns obtained from both OpenPose-MA and       
Human-MA were consistent with 3D-MA (Figure 5). 
However, it is worth noting that the waveform patterns dur-
ing landing differed between males and females, showing 
an inverted phase relationship. Figure 6 also demonstrates 
the average waveform patterns and their standard devia-
tions for males and females in both OpenPose-MA and Hu-
man-MA. 

 
Table 1. The intraclass correlation coefficient [ICC (1, 3)] for knee valgus at each phase of landing and the excursion in three 
measurements of the drop vertical jump. 

 3D Human OpenPose 

Ground contact 1.00 [0.99 - 1.00] 0.99 [0.99 - 1.00] 1.00 [0.99 - 1.00] 

Lowest COG after landing 0.98 [0.95 - 0.99] 0.97 [0.94 - 0.99] 0.96 [0.92 - 0.98] 

Excursion of the knee valgus angle 0.96 [0.91 - 0.98] 0.94 [0.88 - 0.97] 0.93 [0.86 - 0.97] 
ICC (1,3) [95% confidence intervals]; 3D: three-dimensional motion analysis, Human: human visual detection-based motion analysis, OpenPose: 
OpenPose-based motion analysis; p value was ≤ 0.001 for all parameters. 
 
Table 2. The knee valgus angles during landing on the drop vertical jump. 

  3D Human OpenPose 
Male Ground contact 9.5 (5.4) 12.3 (5.3) 11.6 (3.9)
 Lowest COG after landing 15.1 (16.2) 20.9 (17.8) 22.6 (14.8)
 Excursion of the knee valgus angle 5.6 (13.1) 8.6 (16.7) 11.0 (14.9)
Female Ground contact* -0.2 (5.3) 2.0 (4.7) -0.6 (6.6)
 Lowest COG after landing* -6.0 (8.8) -5.3 (9.8) -3.8 (9.3)
 Excursion of the knee valgus angle* -5.8 (4.7) -7.4 (5.4) -3.2 (3.2)

Mean (SD), degree; An asterisk (*) indicates significant sex-based differences (P < 0.05). No significant difference among 3D, Human, and 
OpenPose. No interaction effect between these factors. 3D: three-dimensional motion analysis, Human: human visual detection-based motion 
analysis, OpenPose: OpenPose-based motion analysis, COG: center of gravity, Negative values represent the knee valgus angle. 

 
Table 3. The mean absolute error of the knee valgus angles and t-test results using the three-dimensional motion analysis as a 
reference. 

 Human OpenPose P value 
Ground contact 3.5 (2.5-4.5) 3.4 (2.2-4.6) 0.898
Lowest COG after landing 4.1 (2.6-5.6) 5.2 (3.4-7.0) 0.319
Excursion of the knee valgus angle 3.5 (2.5-4.4) 4.2 (3.1-5.4) 0.286
Throughout the landing phase 3.2 (2.1-4.4) 2.4 (1.9-3.0) 0.194

Mean (95% confidence intervals), degree; P value by unpaired t-tests (Human vs. OpenPose); Human: human visual detection-based motion 
analysis, OpenPose: OpenPose-based motion analysis, COG: center of gravity. 

 
Table 4. The coefficient of multiple correlation (CMC) for the waveform pattern similarity of the knee valgus angles during 
landing and the t-test results using the three-dimensional motion analysis as a reference. 

 Human OpenPose P value
Male 0.887 (0.114) 0.841 (0.147) 0.445 
Female 0.850 (0.195) 0.815 (0.143) 0.605 
Overall 0.886 (0.162) 0.826 (0.142) 0.381 

Mean (SD); Human: human visual detection-based motion analysis, OpenPose: OpenPose-based motion analysis. CMC: Human/OpenPose vs. 
three-dimensional motion analysis; P value by unpaired t-tests (Human vs. OpenPose).  
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Figure 4. Correlations for knee valgus angle measurement with Human, OpenPose, and 3D. The figures illustrate the knee valgus 
angles or its excursion at the following specified timings or duration. Knee varus angles show positive values, and the valgus angles show negative 
values. Human: human visual detection-based motion analysis; OpenPose: OpenPose-based motion analysis; 3D: three-dimensional motion analysis. a: 
initial contact; b: lowest center of gravity (COG) after landing; c: from the initial contact to the lowest COG after landing. No significant differences 
were found at landing phase or knee valgus excursion. 
 

 

 
 
 

Figure 5. Average waveform patterns of the knee valgus angles during landing phase. OpenPose: 
OpenPose-based motion analysis; Human: human visual detection-based motion analysis; 3D: three-dimensional 
motion analysis. Regarding key timings, initial contact was at time zero and the lowest COG was 43.4 ± 2.9%. 
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Figure 6. Average waveform patterns with SD of the knee valgus angles during landing phase. Open-
Pose: OpenPose-based motion analysis; Human: human visual detection-based motion analysis. standard deviation (SD). 
 

 

 
 
 

Figure 7. Summary of the results: validation of accuracy in OpenPose-MA and Human-MA. MAE represents the 
mean absolute error throughout the landing phase indicating the overall accuracy in OpenPose -MA and Human-MA. CMC represents 
the coefficient of multiple correlation indicating the validity of waveform pattern similarity. N.S.: no significance. 

 
Discussion 
 
The results of the study indicate that there were no signifi-
cant differences in the knee valgus angles in the frontal 
plane during landing among OpenPose-MA, Human-MA, 
and 3D-MA. This suggests that OpenPose-MA can provide 
accurate measurements similar to those obtained through 
conventional Human-MA. The mean absolute errors 

(MAEs) of the knee valgus angles were not significantly 
different between OpenPose-MA and Human-MA, further 
supporting the comparable accuracy of the two methods. In 
terms of waveform pattern evaluation, OpenPose-MA ex-
hibited a good correlation with 3D-MA. This indicates that 
OpenPose-MA can be a valuable tool for the qualitative as-
sessment of movement patterns. Figure 7 visually demon-
strates the usefulness and value of OpenPose-MA in       
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evaluating movement patterns. Overall, the findings sug-
gest that OpenPose-MA is a reliable and accurate measure-
ment tool for assessing knee valgus angles in the frontal 
plane during landing. It provides comparable results to 
conventional Human-MA and offers the additional ad-
vantage of automated analysis and efficient data pro-
cessing. 

The MAE of 2.4° (95% CI: 1.9° to 3.0°) observed 
in OpenPose-MA compared to the gold standard 3D-MA 
indicates an acceptable level of accuracy for clinical eval-
uation. Previous studies have suggested that absolute errors 
within this range are considered acceptable in clinical as-
sessments (McGinley et al., 2009; Bessone et al., 2022). 
Moreover, it is worth noting that individuals with sports-
related ACL injuries have been found to exhibit signifi-
cantly greater dynamic maximum knee valgus angles dur-
ing the DVJ task compared to those without ACL injuries, 
with a difference of approximately 7.6° (Hewett et al., 
2005). Given this information, the accuracy provided by 
OpenPose-MA can be valuable in detecting subtle angle 
differences that may increase the risk of sports-related in-
juries, such as ACL injuries, as reported in previous studies 
(Hewett et al., 2005). Therefore, OpenPose-MA not only 
offers an acceptable level of accuracy but also has the po-
tential to contribute to injury risk assessment and preven-
tion by detecting differences in knee valgus angles associ-
ated with increased injury risk. 

The analysis of ICCs (1,3) and their 95% confi-
dence intervals demonstrated that the DVJ were highly sta-
ble and reproducible (Table 1). Furthermore, the Open-
Pose-MA had sufficient reproducibility. Therefore, the 
DVJ using OpenPose-MA is considered practical and use-
ful for sports-related functional assessment and screening. 

In this study, the MAEs for the knee valgus angles 
in the frontal plane during the DVJ landing phase was 2.4° 
(95% CI: 1.9° to 3.0°). In contrast, a previous study using 
smartphone cameras reported the MAEs of 5.82° 
(Viswakumar et al., 2021), and a report using digital video 
cameras synchronized with three-dimensional motion anal-
ysis showed 5.6° (Stenum et al., 2021). Therefore, the re-
sults of this study indicate a better estimation accuracy of 
OpenPose compared to previous studies. This improve-
ment can be attributed to the matching of the video setup 
(measurement frequency, resolution, camera distance) with 
the reference three-dimensional motion analysis and the 
correction of lens distortion in the video footage. The re-
sults suggest that environmental factors may affect the re-
sults of OpenPose estimation. 

OpenPose-MA holds significant potential for revo-
lutionizing motion analysis and offers numerous benefits 
to biomechanical research. The key advantages of Open-
Pose-MA are outlined as follows: 
 Cost savings: OpenPose-MA eliminates the need for 

expensive motion analysis equipment and software, 
making it more accessible and cost-effective for re-
searchers. This affordability is expected to promote 
the widespread adoption of motion analysis technol-
ogy. 

 Time efficiency: By automating time-consuming 
tasks, such as processing high-frequency video im-
ages and handling large datasets, OpenPose-MA      

significantly improves efficiency. Researchers can al-
locate their time to more complex and creative as-
pects of analysis, accelerating the research process.  

 High reproducibility: OpenPose-MA minimizes po-
tential errors and biases associated with manual exe-
cution. It ensures consistent accuracy and reproduci-
bility, enhancing the reliability of motion analysis re-
sults. 

 Measurement flexibility: Unlike traditional 3D mo-
tion analysis that requires controlled laboratory set-
tings and the attachment of skin markers, OpenPose-
MA only relies on regular video recordings. This flex-
ibility enables analysis of movements during every-
day activities and sports competitions, expanding the 
scope of biomechanical research.  

 
Based on these aforementioned advantages, OpenPose-
MA holds the potential to greatly enhance the field of mo-
tion analysis in both clinical and sports settings. 

In this study, OpenPose-MA effectively highlighted 
distinct waveform pattern differences between males and 
females during the landing phase of the DVJ task. Males 
exhibited a tendency towards varus knee joint motion, 
while females showed significantly valgus-oriented knee 
joint motion. These findings align with previous research 
on sex differences (Hewett et al., 2005; Noyes et al., 2005; 
Peebles et al., 2020; Kawaguchi et al., 2021), further vali-
dating the suitability of OpenPose-MA for qualitative eval-
uation of landing patterns. 

Notably, this study is the first to investigate and 
identify the inherent errors in both OpenPose-MA and Hu-
man-MA. Measures were taken to eliminate potential 
sources of error, including the correction of camera lens 
distortion and synchronization of video and motion analy-
sis data. The knee valgus angle calculation and digital low-
pass filtering were standardized across both methods. Ad-
ditionally, a zero-reference point was established in the 
participants' standing position. As a result, this experiment 
provides a comprehensive assessment of the identification 
errors associated with OpenPose-MA and Human-MA by 
minimizing confounding factors. 

This study successfully demonstrated the applica-
bility of OpenPose-MA to prompt movements (e.g., jump-
ing) as well as slow movements (e.g., squatting and walk-
ing), consistent with previous research (Ota et al., 2020; 
Ota et al., 2021; Ino et al., 2023). Ota and colleagues re-
ported high validity for knee flexion-extension angles dur-
ing the bilateral squat (R2 = 0.83, ICC = 0.80) (Ota et al., 
2020), while our study reported strong correlations for 
knee valgus angles during the DVJ (Pearson’s r, 0.846-
0.966), indicating comparable accuracy. Additionally, our 
study revealed good validity for knee valgus angle wave-
forms (CMC = 0.86 ± 0.14) and MAEs during the DVJ, 
which were not addressed in previous studies (Cao et al., 
2019; Ota et al., 2020; Ota et al., 2021). These findings 
provide valuable insights for the clinical application of 
OpenPose-MA. 

However, this study has several limitations. First, 
the reference 3D-MA method used in this study may have 
inherent errors due to skin movement (Everaert et al., 
1999). Second, the 2D nature of the analysis may have been 
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influenced by the subject's orientation relative to the cam-
era, highlighting the importance of careful experimental 
setup as emphasized in previous research (Zago et al., 
2020). Third, the resolution of video images could poten-
tially impact the results (Zago et al., 2020), but we mini-
mized this concern by utilizing high-definition videos. 
Fourth, the resilience of the OpenPose algorithms to light-
ing conditions and extraneous noise needs to be verified. 
Fifth, Human-MA has the potential for inter-rater variabil-
ity and bias. In this study, one well-trained analyst con-
ducted the study. Finally, OpenPose algorithms are suscep-
tible to biases and uncertainties arising from the training 
data and algorithm design. Future directions could involve 
developing specialized AI algorithms for biomechanics re-
search and exploring the potential of 3D motion analysis 
using AI to address these challenges. 
 
Conclusion 
 
The results demonstrated that OpenPose-MA achieved ac-
ceptable accuracy relative to 3D-MA and exhibited no sig-
nificant difference compared to Human-MA in measuring 
knee valgus angle. Notably, OpenPose-MA offers several 
advantages over conventional Human-MA, including cost 
and time efficiencies. 
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Key points 
 
 This study evaluated the accuracy of artificial intelligence-

based motion analysis employed the OpenPose algorithm 
(OpenPose-MA) compared with human visual detection-
based motion analysis (Human-MA) with reference to 
three-dimensional motion analysis (3D-MA). 

 No significant difference between OpenPose-MA and Hu-
man-MA was observed in terms of the mean absolute error 
(AI: 2.4° [95%CI: 1.9 - 3.0°], Human: 3.2° [95%CI: 2.1 - 
4.4°]) of the knee valgus angles.  

 The Pearson’s correlation coefficients of OpenPose-MA 
and Human-MA relative to that of 3D-MA were 0.97 and 
0.98, respectively. 

 This study revealed that OpenPose-MA exhibited satisfac-
tory accuracy compared with 3D-MA, similar to the con-
ventional Human-MA.  

 Compared with conventional motion analysis, OpenPose-
MA affords great advantages in terms of time-consumption 
and cost-saving. 
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