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Abstract 
Sports injuries pose significant challenges in athlete welfare and 
team dynamics, particularly in high-intensity sports like soccer. 
This study used machine learning algorithms to assess non-con-
tact injury risk in professional male soccer players from physio-
logical and mechanical load variables. Twenty-five professional 
male soccer players with a first-time, non-contact muscle injury 
were included in this study. Recordings of external load (speed, 
distance, and acceleration/deceleration data) and internal load 
(heart rate) were obtained during all training sessions and official 
matches over a 4-year period. Machine learning model training 
and evaluation features were calculated for each of nine different 
metrics for a 28-day period prior to the injury and an equal-length 
baseline epoch. The acute surge in the values of each workload 
metric was quantified by the deviation of maximum values from 
the average, while the variations of cumulative workload over the 
last four weeks preceding injury were also calculated. Seven fea-
tures were selected by the model as prominent estimators of in-
jury incidence. Three of the features concerned acute load devia-
tions (number of sprints, training load score-incorporating heart 
rate and muscle load- and time of heart rate at the 90 - 100% of 
maximum). The four cumulative load features were (total dis-
tance, high speed and sprint running distance and training load 
score). The accuracy of the muscle injury risk assessment model 
was 0.78, with a sensitivity of 0.73 and specificity of 0.85. Our 
model achieved high performance in injury risk detection using a 
limited number of training load variables. The inclusion, for the 
first time, of heart rate related variables in an injury risk assess-
ment model highlights the importance of physiological overload 
as a contributor to muscle injuries in soccer. By identifying the 
important parameters, coaches may prevent muscle injuries by 
controlling surges of training load during training and competi-
tion. 
 
Key words: Soccer, Injury, Machine Learning, Classification, 
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Introduction 
 
In high level sports, injuries hold paramount significance 
due to multifaceted implications in athlete welfare and 
team dynamics (Hägglund et al., 2013). In this regard, pre-
vention and rehabilitation are crucial for sustaining long-
term athletic vitality. Beyond individual health, injuries ex-
ert a palpable influence on team performance, prompting 
strategic adaptations by coaches and engendering financial 
considerations for clubs, particularly when key players are 
affected (Noya Salces et al., 2014). This is particularly ev-
ident in soccer, where the incidence of injuries is notably 

high due to the game's dynamics, speed, power require-
ments, and play patterns (Raya-González et al., 2022).  

Training is often associated with injuries in sports, 
with the relationship between training practices and injury 
risk being a key focus in sports science (Gabbett, 2010; Ro-
galski et al., 2013). The intensity and volume of training 
sessions and methods and the periodization of training play 
pivotal roles in influencing injury susceptibility (Hurley, 
2016). In contemporary soccer, the increased pace and 
more concentrated intervals of high-intensity efforts have 
led to a rise in injuries (Nassis et al., 2020). Studies indicate 
that increased training load and improper load distribution 
can heighten injury risk due to factors such as overuse, fa-
tigue, insufficient recovery, training errors, and biome-
chanical stress (Gabbett, 2016; Gabbett et al., 2017). Indi-
vidual factors, including fitness level and movement bio-
mechanics, also contribute to the variability in injury risk 
among players (Kalkhoven et al., 2021). Effective load 
management, balancing training stress and recovery, is cru-
cial for optimizing performance while minimizing injury 
risk. Coaching practices, including injury risk screening 
and individualized training plans, are essential in reducing 
injuries during training and competition (Bourdon et al., 
2017). 

Advancements in technology and analytical meth-
odologies have opened new avenues for monitoring train-
ing load through wearable global positioning system (GPS) 
devices combined with accelerometers, gyroscopes, and 
heart rate monitoring systems (Ehrmann et al., 2016). 
These technologies offer a wide range of external and in-
ternal training load variables, relating to mechanical load 
imposed on the players and the corresponding physiologi-
cal responses, respectively (Gabbett, 2016; Akenhead and 
Nassis, 2016; Silva et al., 2023). Despite the wealth of in-
formation these systems provide, the most significant var-
iables and the appropriate methods for analyzing longitu-
dinal data are not universally acknowledged (Bourdon et 
al., 2017; Gabbett et al., 2017; Khezri et al., 2022). On this 
premise, the Acute to Chronic Workload Ratio (ACWR) is 
commonly employed in the context of monitoring sports-
related training loads to optimize performance and mini-
mize injury risk (Gabbett et al., 2016). ACWR is a metric 
to assess the balance between short-term or “acute” work-
load (i.e., the workload over the past week) and long-term 
or “chronic” workload (i.e., the average workload over the 
past 4 weeks). Monitoring the ACWR helps ensuring that 
athletes are exposed to appropriate levels of training stress, 
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avoiding sudden spikes or prolonged periods of high work-
load that may increase the risk of injuries and cause a de-
cline in performance. However, the specific threshold val-
ues for an optimal or risky ACWR may vary, based on in-
dividual athlete characteristics, sport types, and training 
patterns (Suarez-Arrones et al., 2020; Bowen et al., 2020). 

From this viewpoint, Artificial intelligence (AI) and 
machine learning (ML) algorithms may be valuable in as-
sessing injury risk in sports (Claudino et al., 2019; Van 
Eetvelde et al., 2021; Kumar et al., 2024). These technolo-
gies can elucidate complex relationships between various 
variables, providing insights into factors related to over-
load (Jaspers et al., 2018). While several studies have ap-
plied ML in sports, only a few focus on injury risk assess-
ment in soccer (Nassis et al., 2023). For instance, Rommers 
et al., (2020) used a preseason screening test in 734 young 
soccer players, employing an XGBoost method to achieve 
85% classification accuracy in assessing injury risk. An-
other study (Ayala et al., 2019), utilized oversampling and 
ensemble learning methods to detect hamstring strain in-
jury risk, achieving an AUC score of 0.837, with 77.8% 
sensitivity and 83.8% specificity. In a similar design, 
López-Valenciano et al., (2018), used decision tree algo-
rithms and cost-sensitive ADTree models to estimate mus-
cle injury risk, achieving an AUC score of 0.747. More re-
cently, Piłka et al., (2023) employed XGBoost decision-
making methods to assess non-contact lower body injury-
risk based on GPS data, and achieved a 90% accuracy. 

Despite the effective use of ML for identifying ele-
vated injury risk from single-time measurements, the fluc-
tuations in training load over extended periods may offer 
new insights into injury risk assessment and prevention 
(Rossi et al., 2021; Pillitteri et al., 2023). Rossi et al., 2018 
introduced a multi-dimensional ML approach for injury 
risk estimation in soccer, using a large number of GPS and 
accelerometer data, combined with age, and play time data. 
Their decision tree model demonstrated a sensitivity of 
0.80 and specificity of 0.50 in injury classification, offering 
practical rules for evaluating injury risks. Taking the above 
into consideration, it becomes evident that the occurrence 
of injuries in soccer is influenced by a complex interplay 
of multiple factors. The present study aims to model to 
non-contact injuries predistortions via ML, taking into ac-
count the deviations of training load variables from the in-
dividual player’s baseline. This is the first study to include 
heart rate data in the injury risk assessment model, hypoth-
esizing that significant factors contributing to potential in-
juries are either singular events (substantial training load 
divergence on a specific day) or cumulative training load 
over time. 
 
Methods 
 
Study design 
Training and match load was monitored during all training 
sessions and official games over the last three seasons 
(2021 - 2024) in professional soccer players of the Greek 
Super League. Nine external and internal load metrics were 
collected using wearable GPS devices, integrated with an 
accelerometer and heart rate recording belt or vest. Data 
from 25 players with a first-time (i.e., within at least a 12-

month period), non-contact injury were included. A 28-day 
epoch prior-to-the-injury was selected for feature calcula-
tion, while an equal length non-injury baseline epoch (i.e., 
a random period prior to the injury epoch from the same 
season the injury occurred) was extracted as a control pe-
riod. Machine learning model training, and evaluation fea-
tures were calculated for each of the different metrics for 
both injury and baseline epochs. Since our hypothesis 
states that excessive and/or unaccustomed exertion im-
poses a physiological burden on the athlete's body that may 
lead to injury, the features’ calculations intended to present 
the deviations from the baseline performance measure-
ments. As such, the deviation of maximum from average 
(DEV) and the variation of the ACWR was calculated for 
each of the internal and external load metrics collected. To 
diminish variability, while highlighting the discriminatory 
capacity of the features, a feature selection framework was 
implemented. This facilitated the identification of the most 
pertinent features for classification, concurrently eliminat-
ing features that might exhibit redundancy in the subse-
quent classification procedures. Finally, the risk assess-
ment model was validated for feature calculation and se-
lection. 
 
Participants 
Twenty-five professional male soccer players with a first-
time (i.e., within at least a 12-month period), non-contact 
muscle injury, were included in this study. All players were 
part of the starting or substitute squad of Asteras Tripolis 
F.C. in the Greek Super League (the domestic top profes-
sional soccer league) and played different positions (ex-
cluding the position of goalkeeper, due to the different na-
ture of gameplay and training). Out of the 25 athletes, 11 
were midfielders, 7 were full backs, 3 were Forwards and 
4 were Center Backs. Considering the type of injuries in-
cluded, 40% were hamstrings strains, 32% were adductor 
strains, 16% were calf muscle strains, and 12% were quad-
riceps strains. The study was approved by the Ethics Com-
mittee of the School of P.E. and Sport Science, (1275/17-
03-2021) and all procedures were in accordance with the 
Code of Ethics of the World Medical Association (Helsinki 
declaration of 1964, as revised in 2013). Written informed 
consent was obtained from all participants. 
 
Data collection 
Training and match load was monitored during all training 
sessions and official games over the last three seasons 
(2021 - 2024), i.e. 665 training session, 111 games and 173 
days off, with <1.5% missing data. Of the 25 injuries, 7 
occurred in the season 2021 - 2022, 10 in the season 2022-
2023, and 8 in the season 2023 - 2024. Data acquisition 
involved the recording of the players’ physical activity, us-
ing wearable GPS devices, integrated with an accelerome-
ter and heart rate recording belt or vest (Polar team Pro sys-
tem (Polar Electro, Kempele, Finland). The sensor consists 
of a 10 Hz GPS unit integrated with an accelerometer, a 3D 
gyroscope and a separate heart rate monitoring belt or vest. 
The GPS devices were placed between the players’ scapu-
lae through a tight vest or shirt. From the data collected by 
the devices a set of training workload indicators were ex-
tracted through the web-based software of Polar team Pro 
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for all training sessions and games. The data comprised of 
dynamic player variables (such as the number of sprints, 
number of accelerations, number of decelerations, and total 
distance covered), paired with other metrics (heart rate data 
and derivatives such as time in heart rate zones). Specifi-
cally, from each player, 9 different metrics were used, de-
scribing different aspects of the workload in a training ses-
sion or match. The metrics and their description are pre-
sented in Table 1. Figure 1 presents an example of the rec-
orded metrics for a particular subject over a period of six 
weeks, prior to injury. It is important to note that although 
a trend can be discerned in a small number of subjects 
(showing the “surge” of particular metrics before the injury 
the last week prior to injury, Figure 1), this is not true for 

the majority of the participants. In fact, large increments of 
the recorded metrics were displayed over the weeks before 
injury in a more random order, thus calculating specific 
“cut off” points (e.g. the number of sprints, combined with 
elevated HSR) is ineffective to assess predisposition of the 
player to injury. 
 
Feature calculation 
To explore the time-varying training load information with  
respect to injury incidents, a 28-day epoch prior-to-          
the-injury was selected for feature calculation. In the       
present study, this 28-day epoch included 20.6 ± 2.4 train-
ing sessions, 3.1 ± 1.4 games and 4.3 ± 2.8 days off.             
In a similar  fashion, a 28-day  non-injury  baseline  epoch 

 
Table 1. Internal and External Load Metrics used in the model. 

Metric Name Abbreviation Description 
Distance DTOT Total distance covered 
Sprints Sprints Total number of sprints 
Accelerations Acc Total number of accelerations above 2 m/s2 
Decelerations Dec Total number of decelerations above 2 m/s2 
High speed running  HSR Total distance covered with running speed above 19.8 km/h 
Sprint Distance DSprint The distance covered with running speed above 25.2 km/h 

Training Load score TL score 
A numerical transformation of the Cardio and muscle load provided by the 
Polar software 

Time in Heart Rate zone 80-90 THR 80-90 Time in seconds in Zone 4 (i.e., 80 to 90% of maximum heart rate) 
Time in Heart Rate zone 90-100 THR 90-100 Time in seconds in Zone 5 (i.e. 90 to 100% of maximum heart rate) 

 
 

 

 
 

 
 

Figure 1. An indicative example of the recorded metrics for a specific subject for 6 weeks prior to injury occurrence. The 
fluctuations of the metrics are presented with blue circles and the day of the injury is indicated with red text. The green line demonstrates the average 
metric per week.   
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(i.e., a random period prior to the injury epoch from the 
same season the injury occurred) was extracted for subse-
quent comparison, machine learning model training, and 
evaluation. To alleviate the confounding effects of unre-
lated factors, specific focus was given to ensure that the 
selected non-injury epochs started least 14 days after 
league breaks, player time-off, national squad training/ 
games or illness related absences from the teams’ training 
schedule. Following the time period designation, features 
were calculated for each of the different metrics for both 
injury and baseline epochs. Since our hypothesis states that 
excessive and/or unaccustomed exertion imposes a physi-
ological burden on the athlete's body, thus resulting to in-
jury, the features’ calculations intended to present the de-
viations from the baseline performance measurements. As 
such, they included an estimation of the deviation of max-
imum from average (DEV) and a variation of the ACWR. 
Specifically, DEV was designed under the premise that a 
single event (a divergence from the average) could trigger 
injury, even after a few weeks. In this regard, the average 
of each metric calculated for each epoch, excluding the 
maximum value (to avoid estimator bias). Then, the result 
was divided with the maximum value as presented in the 
equation (1) below: 
 

𝐷𝐸𝑉
∑ 𝑤 𝑚𝑎𝑥

𝑚𝑎𝑥
 Equation 1 

 
Where wi the value of the metric each day, n the number of 
observations and max is the maximum value. 
 

On the contrary, ACWR reflected the cumulative 
workload over a period of time. Generally, the ACWR de-
scribes the ratio of acute (i.e. rolling average of training 
load completed in the last 7 days preceding the injury) to 
chronic (i.e. rolling average of training load completed in 
the past 4 weeks) workload. Our variation diverged in the 
chronic workload rolling average computation, as it ig-
nored data from the last week to calculate the average in 
the denominator (equation 2).  

 

𝐴𝐶𝑊𝑅 
∑ 𝑤

∑ 𝑤 ∑ 𝑤 ∑ 𝑤
 Equation 2 

 
Where n denotes the number of weeks, w the value of the 
metric each day, with the summation index i corresponding 
to days of week 4, j corresponding to days of week 1, k cor-
responding to days of week 2, and l corresponding to days 
of week 3 
 

As mentioned above, the feature calculation process 
was utilized for each metric, resulting in 9 × 2 = 18 (metrics 
× features) individual samples for each of the 25 × 2 = 50 
instances (subjects × epochs). 
 
Feature selection 
To diminish variability, while highlighting the discrimina-
tory capacity of the features, a feature selection (FS) frame-
work was implemented. This facilitated the identification 
of  the  most  pertinent  features  for  classification,  concur- 

rently eliminating features that might exhibit redundancy 
in the subsequent classification procedures. On this prem-
ise, a Recursive Feature Elimination method incorporating 
Correlation Bias Reduction (RFE-CBR) was employed to 
assess interdependencies among features (Yan and Zhang, 
2015). In brief, the RFE-CBR FS involves a backward 
elimination process, commencing with a complete feature 
set. It evaluates the influence of each feature and sequen-
tially removes the one with the least effect from the feature 
space (based on the coefficients obtained from an internal 
Support Vector Machines (SVM) model). Additionally, it 
identifies highly correlated features to mitigate correlation 
bias, discerning features with substantial correlation and 
addressing potential underestimation of their significance. 
As the algorithm converges, a ranked feature space is es-
tablished by sorting all features in reverse order of exclu-
sion. To ensure that the FS (and subsequent classification) 
procedure would discern features invariant to individual 
subjects that encapsulate global information related to 
workload and injury, a leave-one-(subject)-out cross-vali-
dation (LOOCV) process was implemented. As such, in 
each iteration the data of one participant (comprising both 
epochs) were excluded, and the RFE-CBR FS was imple-
mented on the remaining dataset. This process yielded 25 
FS rankings. Then an overall FS ranking index was esti-
mated by a repetitive process, incorporating, one at a time, 
the most frequently shared feature across all folds. In de-
tail, this process commenced with an empty feature set, 
where the first subset included the most common feature in 
the top rank of the FS ranking sets. Subsequently, each sub-
sequent subset expanded to include the two most common 
features in the first two ranks, and so forth. 
 
Classification 
Classification utilized an SVM classifier with a Radial Ba-
sis Function kernel (RBF) under the same LOOCV design 
(Wang, 2005). Concisely the SVM classifier aims to find a 
hyperplane that best separates data classes in this trans-
formed space. The RBF kernel computes similarity be-
tween data points in a high-dimensional space, allowing 
SVM to effectively handle non-linear patterns. As men-
tioned above, in each LOOCV repetition, the data of one 
participant were excluded. This allowed us to allocate the 
remaining data points (subjects) to the training set, while 
the data corresponding to the excluded subject were con-
sidered the testing set. To ascertain the optimal feature sub-
set, classifier performance was assessed by incrementally 
incorporating each feature from the overall FS ranking in-
dex. Performance was evaluated using classification accu-
racy (the average accuracy across all folds), retaining the 
feature subset yielding the highest performance for further 
analysis. 

In the process of parameter refinement, we system-
atically adjusted the soft-margin regularization parameter 
(box constraint) C, utilizing a geometric sequence ranging 
from 10-2 to 102 with a factor of 10. Additionally, we ma-
nipulated the Kernel Scale within the radial basis function 
(RBF) kernel, analogous to the sigma parameter, across the 
interval of 0.5 to 4, employing increments of 0.5. Optimal 
values were set to C = 10 and Kernel Scale = 2. To mitigate 
potential selection bias or overtraining, we conducted 1000 
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permutation tests under the same LOOCV procedure, 
wherein class labels were randomized. Subsequently, an 
empirical distribution of classification accuracies was esti-
mated, and a p-value was computed to represent the prob-
ability of the randomized samples outperformed the SVM-
RBF classifier (Golland et al., 2005). All FS and classifi-
cation algorithms were implemented using customized 
codes, the Feature Selection Library and the LIBSVM 
toolboxes in MATLAB 2022b (Mathworks Inc., Natick, 
MA, USA)(Chang and Lin, 2011; Roffo and Melzi, 2017). 
A scematic of the poporsed methodology is presented in 
Figure 2. 
 

Validation 
To investigate the validity of our methods we further eval-
uated additional feature extraction and classification meth-
ods as described below. The results of our validation pro- 
cedures are presented in the results section. 

Alternative hypothesis evaluation: To further vali-
date our initial feature calculation hypothesis (i.e., that the 
inclusion of the last week in the chronic workload rolling 
average computation might integrate estimator bias and not 
accurately display prominent deviation from baseline), we 
additionally calculated the ACWR incorporating all weeks 
and subsequently duplicated the aforementioned FS and 
classification processes. 

Additional classifiers evaluation: To assess the 
global discriminative capacity of the selected features (as-
suming that the selected features would attain high classi-
fication performance despite the classifier employed), we 
subjected the RFE-CBR subset to multiple machine learn- 

ing methods. These methods encompassed Linear SVM, k-
Nearest Neighbor (k-NN), Linear Discriminant Analysis 
(LDA), and Random Forest (RF) classifiers. 
 

Results 
 

Classification Performance 
For the assessment of injury risk (classification of injury 
vs. baseline epochs), we combined DEV and ACWR fea-
tures. This integration led to high performance, achieving 
an accuracy of 0.78 (p < 0.01, 1000 permutations), sensi-
tivity = 0.73, specificity = 0.85 (Table 2). Figure 3 presents 
the confusion matrix and ROC curve of the classification 
model. The feature set comprised 7 features in total, with 3 
being DEV features (i.e, Sprints, TL score and THR 90-
100) and 4 being ACWR features (i.e, DTOT, HSR, 
DSprint and TL score). We subsequently evaluated the sep-
arate discriminative capacity of DEV or ACWR features in 
injury risk assessment (described in the following section). 
As such, by utilizing the 3 DEV features a significantly 
lower accuracy of 0.62 (p < 0.05) was obtained. Con-
versely, relying solely on ACWR features yielded compa-
rable accuracy (0.76, p < 0.05), although it was inferior to 
the performance achieved by incorporating both feature 
sets. The implications of the selected features are further 
discussed below. 
 

Table 2. Classification performance results 
Features Accuracy Sensitivity Specificity 
DEV 0.62 0.59 0.67 
ACWR 0.76 0.71 0.84 
DEV + ACWR 0.78 0.73 0.85

 
 

 
 

 
 

                Figure 2. A schematic of the workflow of the proposed framework. 
 

 
 

 
 

 
 

Figure 3. The performance or the SVM RBF classifier utilizing DEV and ACWR features: the confusion matrix 
(left panel) and the ROC curve (right panel). 
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Figure 4. The variations of the feature values in the two groups (baseline and injury epochs) for ACWR features (left panel) 
and DEV features (right panel). On each box, the median is indicated by a blue horizontal line, the red cross (+) denotes the outliers, while the 
whiskers extend to the most extreme data points. Below each box pair, the name of the metric is presented. The star (*) symbol denotes a paired t test 
p-value <0.05. 

 
Selected features analysis 
As mentioned above, from the total 18 features (corre-
sponding to 9 DEV and ACWR load metrics), 7 were se-
lected as prominent estimators for the assessment of injury 
risk. The 3 DEV features were: Sprints, TL score and THR 
90-100, whereas the 4 ACWR indicated DTOT, HSR, 
DSprint and TL score. The feature distributions are pre-
sented in Figure 4. To identify explicit patterns in the con-
text of injury risk assessment, the selected features were 
investigated in terms of the differences between the base-
line and injury epochs. On this premise, a paired t-test was 
performed on individual features. The statistical test deter-
mines if the variance between the means of two observa-
tions (in this study, baseline vs injury) diverge signifi-
cantly, where each observation in one group is paired with 
a specific observation in the other group. However, a 
paired t test did not reveal any significant differences be-
tween the two classes with the exception of DEV TL score 
(p-value = 0.03). In a similar manner, further inspection of 
the differences between the epochs was performed (i.e., as-
sessing whether the selected features demonstrate a global 
increase or decrease). 

Based on the statistical test, no significant differ-
ences could be discerned, demonstrating a large inter-sub-
ject variability on each metric. However, an increasing 
trend was observed in the mean values of ACWR features 
indicating that (on average) the values of all selected metric 
on the final week (i.e., the week of injury, acute) were 
larger than the previous (chronic) weeks. On the contrary 
in the baseline epoch, the measurements obtained during 
the last week exhibited a level of consistency with those of 
preceding weeks, indicating a lack of significant diver-
gence in recorded values.  The same applies in DEV, where 
the feature values demonstrate a decline when comparing 
baseline and injury epochs. Since the DEV incorporated 
the max value as the partitioning element in the ratio cal-
culation, this reduction suggests that the maximum value 
observed during the injury epochs exceeded that of the 
baseline, signifying an elevated deviation from the aver-
age. 

Validation Results 
Alternative Hypothesis evaluation: The classification out-
comes of the proposed framework with the inclusion of the 
last week, presented poor performance (Table 3). This ob-
servation aligns with established expectations, as in the in-
jury epoch, the ACWR ratio calculation was significantly 
affected, making large deviations (especially prior to in-
jury, i.e. the last week) extremely challenging to be per-
ceived. This in turn rendered the classification process in-
effective. Interestingly, the FS process produced 9 features 
as optimal subset, 6 of which were common to our pro-
posed framework (i.e. ACWR features: DTOT, HSR, 
DSprint, DEV features: Sprints, TL score, THR 90-100). 
Moreover, the combination of both ACWR and DEV fea-
tures improves performance. However, the classification 
results were marginal above chance level and therefore no 
conclusions can be drawn with certainty. 
 
Table 3. Alternative hypothesis validation results.  
Features Accuracy Sensitivity Specificity 
DEV 0.54 0.52 0.56 
ACWR 0.56 0.57 0.55 
DEV + ACWR 0.58 0.57 0.60 
 
Additional classifiers evaluation: The four supplementary 
classifiers (SVM-Linear, k-NN, LDA, and RF) exhibited 
satisfactory classification performance (Table 4), suggest-
ing the universal efficacy of the employed features. How-
ever, none surpassed the SVM-RBF in terms of classifica-
tion accuracy, this observation indicates the validity of the 
selected features for machine learning injury risk assess-
ment, independent of classifier-specific algorithmic meth-
odologies. 
 
Table 4. Additional classifiers validation results. 
Classifiers Accuracy Sensitivity Specificity 
k-NN 0.7 0.68 0.73 
LDA 0.62 0.61 0.64 
RF 0.64 0.61 0.66 
SVM - Linear 0.70 0.68 0.73 
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Discussion 
 
The aim of this study was to develop a machine learning 
model for the assessment of injury risk in professional soc-
cer players, using the short and longer-term deviations of 
external and internal load parameters from each player’s 
baseline values. The developed model showed high values 
of accuracy, sensitivity and specificity (0.78, 0.73 and 0.85, 
respectively), demonstrating its ability to effectively detect 
early indicators of injury risk using three acute and four 
“chronic” external and internal training load features. Spe-
cifically, it was shown that an acute increase in high speed 
and sprint running distance, along with increased heart 
rate-related metrics, may serve as reliable indicators of 
muscle injury risk. The use of heart-rate derived features 
obtained, for the first time, during all training sessions and 
games, highlights the importance of the individual physio-
logical overload as a contributor to muscle injuries in soc-
cer. 

To the best of our knowledge, our ML model 
achieved higher or comparable performance for injury risk 
assessment with most studies (Rossi et al., 2018; López-
Valenciano et al., 2018; Ayala et al., 2019; Rommers et al., 
2020; Oliver et al., 2020), with the exception of Piłka et al., 
2023 who outperformed the efficacy of our methodological 
approach. We note that the data and features extracted are 
not the same in the two studies, but in all cases, they are 
related with injury risk assessment, enabling an indicative 
comparison. In fact, in the study of Piłka et al. (2023) the 
classes were selected between injury and not injury events 
(total number of 1064 epochs) On the contrary, our ap-
proach focused solely on initial occurrences of injury, tak-
ing into account the external and internal load during the 
month immediately preceding the injury compared to a 
baseline month (4 weeks). Our objective was to achieve a 
balance between accuracy in assessing injury risk and clar-
ity in explaining to the practitioners which factors are most 
critical, linking training variables to injury events. In this 
regard, we hypothesized that muscle injuries are linked 
with “overloading”, manifested either as an isolated event 
(evident as a one-day outlier in training load metrics) or as 
a cumulative deviation from the baseline (pronounced in 
the week preceding the injury). Our results, in conjunction 
with the low p-value derived from permutation tests, show 
that the framework successfully identified important fea-
tures without data overfitting. It is worth mentioning that 
contemporary methodologies, such as deep learning, could 
theoretically produce superior performance. Nevertheless, 
these approaches encode information as higher-level ab-
stractions of the original data, posing challenges for ex-
plainability and understanding by practitioners (Zhang and 
Zhu, 2018; Mahmud et al., 2018). Our goal was not only to 
achieve high classification performance but also to identify 
variables related to injury risk and may be controlled by 
coaches. Additionally, alternative classification methods 
(i.e., k-NN, SVM Linear, LDA, and RF classifiers) were 
employed to estimate overall optimal performance. Alt-
hough these classifiers were inferior to the SVM-RBF in 
terms of classification accuracy, their performance demon-
strated a satisfactory level (Table 4). This suggests the gen-

eral applicability of the selected features for injury risk as-
sessment, with classification validity transcending specific 
algorithmic procedures. 

Concerning the selected features, high accuracy was 
achieved using just the ACWR features, while, in contrast, 
the use of only the DEV features resulted in a decrease in 
accuracy to 0.62. It is important to note that our model uti-
lized non-differentiated classification of muscle injuries 
without accounting for their severity or specific nature. 
From this standpoint, a complete exclusion of these varia-
bles could be applied in favor of prioritizing the incorpora-
tion of more discriminative information. Nevertheless, our 
findings demonstrate that the combination of DEV and 
ACWR features, enhanced the performance of the em-
ployed classifiers. From a technical viewpoint, it is plausi-
ble to hypothesize that classification performance could be 
increased by conducting feature selection separately on 
ACWR and DEV features and then integrating them into a 
unified feature set. However, considering the fact that the 
RFE-CBR FS procedure also assesses correlation bias, the 
unified feature set could encompass uncalculated bias, 
compromising the reliability of the classification processes 
(Toloşi and Lengauer, 2011). 

The discriminative ACWR features included 
DTOT, HSR, DSprint, while DEV features included 
Sprints, TL score and THR 90-100. The emergence of these 
features as important variables in injury risk assessment 
may be related to playing position of the players included 
in this study. Specifically, 72% of the players were mid-
fielders and full backs, who cover on average, significantly 
greater total and high speed running distance compared to 
other positions (e.g. >10.6 km on average per match) (Poli 
et al., 2021). Also, the inclusion of two metrics containing 
heart rate data, (TL score and THR 90-100), would suggest 
for the first time that the physiological and metabolic over-
load related to increased cardiorespiratory stress may con-
tribute to muscle injuries. It is important to note, however, 
that more extensive datasets incorporating a diverse range 
of player positions may identify distinct features as more 
prominent for injury risk assessment for each specific play-
ing position. 

The importance and the contribution of each 
ACWR and DEV feature to the model's decision (injury 
risk assessment) is not as straightforward as in certain other 
models, such as linear regression (Saarela and Jauhiainen, 
2021). For example, by using paired-t test, only DEV TL 
score was found to display significant differences with the 
baseline epoch (Fig. 4). However, our ML model evaluates 
the features’ importance based on the SVM weights (cal-
culated by the integrated classifier), demonstrating that a 
simple statistical approach (i.e. p-values) is ineffective in 
detecting the risk assessment power of a variable. Regard-
ing the question whether "cut-off points" for individual 
variables (e.g., a player surpassing a specific limit in sprint 
distance is prone to injury) may be used as a practical ap-
proach for identifying injury risk factors, our analysis 
shows that this is not advisable. This is because SVMs 
work by finding a decision boundary that best separates 
different classes in the feature space, while using a non-
linear kernel (RBF in this study) makes it harder to              
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interpret feature importance because the decision boundary 
is based on the kernel transformation (Wang, 2005). 

To further assess the validity of the selected features 
regarding our initial hypothesis, the validation procedure 
included a replication of the complete methodology with 
the original ACWR calculation (i.e. taking into account the 
current week in the calculation), instead of our variation. 
The rationale behind this is that since injury epochs end at 
the week the injury occurred, excessive load would be ev-
ident immediately before the injury (i.e., the last week) in 
the form of outliers (data points that significantly differ 
from the rest of the dataset). On this premise, by incorpo-
rating these values in the chronic workload rolling average 
computation, the ratio between the last week and average 
value of the 4 weeks (3 preceding weeks plus the last week) 
would be minimized and would thus fail to capture notable 
deviations from the baseline. As such, the validation results 
presented poor performance (marginal above chance 
level), indicating estimator bias. In fact, for the chronic av-
erage calculation the presence of outliers could distort the 
calculation of the mean (average) (Aguinis et al., 2013). 
Outliers, due to the significant difference from the rest of 
the dataset, can disproportionately influence the mean pull-
ing it in the direction of the extreme values. This can result 
in a mean that does not accurately represent the central ten-
dency (typical value) of the majority of the data, leading to 
a biased estimate. To address this issue, we excluded the 
last week when calculating the chronic workload average. 
By excluding the last week's data, any outliers or extreme 
values from that period have less impact on the overall 
chronic average. This exclusion ensures that the chronic 
workload average reflects the more stable and typical train-
ing load over a more extended period, providing a more 
reliable baseline for comparison with the acute workload. 
Another noteworthy aspect of the validation results is that, 
utilizing solely DEV features (where no recalculation took 
place) classification accuracy dropped significantly (from 
62% to 54%). This was attributed to the inclusion of an ad-
ditional DEV feature (i.e., Dec) that could introduce noise 
rather than useful information, thus excessively tuning to 
the intricacies of the training data (capturing noise and out-
liers) but failing to generalize effectively to the testing 
(new, unseen) data (Vento and Fanfarillo, 2019). 

Although the features selected exhibited satisfying 
performance, caution should be exercised regarding their 
interpretation, particularly concerning the load factors re-
lated to injuries. The primary consideration is that the FS 
procedure only determines which features are important for 
classification, but not how they relate to load-related inju-
ries. Some features might be included or excluded to re-
duce data noise and improve performance without directly 
showing their connection to training load and injuries 
(Haufe et al., 2014). As such, no significant increment or 
decline in feature values could be observed, implying high 
subject variability. Subsequent examination of the features 
supported these findings, with a subset of participants 
(52% - 60%) demonstrating an increase in ACWR features, 
while the remaining participants exhibited a decline. Simi-
lar trends were observed in the case of DEV features, with 
44% - 72% of the overall subjects displaying a decrease. 
This is corroborated by other studies suggesting that      

training load metrics can diverge greatly between individ-
uals, age, player’s position and dissimilarities in effort and 
competence (Hills and Rogerson, 2018; Akyildiz et al., 
2022). However, the robust performance exhibited by the 
RFE-CBR selected features (irrespective of the employed 
classifier, as mentioned above), suggests intrinsic charac-
teristics as dependable indicators of training load injury. 
Furthermore, the integration of ACWR and DEV represen-
tations, despite their dissimilarity, holds the potential to 
validate the associations between single-event and cumu-
lative workload in the context of sports injuries. 

Another notable constraint in this study is the indis-
criminate categorization of injuries without considering 
their severity or type. Hence, it is hypothesized that initial 
non-contact injuries may be attributed to training load 
without accounting for additional factors such as heat 
stress, or dehydration, which have the potential to compro-
mise physical performance by impacting endurance, 
strength, and speed. Moreover, in key matches, local anes-
thetics or corticosteroids, may be administered to alleviate 
pain or reduce inflammation temporarily. This enables 
players to continue participating in a match despite an in-
jury, mislabeling them as uninjured and thus introducing 
bias in the machine learning processes. The limited size of 
the data (25 players) could also have introduced a potential 
bias towards population representation (since all players 
were from the same team, under the same or similar train-
ing methods). As such, generalization of our results to-
wards a universal application should be approached with 
caution. To address this concern, we suggest that future 
studies should enhance both the experimental and method-
ological facets outlined in this manuscript by augmenting 
the dataset size. Also, static features (such as fitness test 
data) and subjective training load reports from athletes 
should be integrated to the model to further increase the 
performance of injury risk assessment. 
 
Conclusion 
 
Machine learning methods were used to assess the risk of 
muscle injuries in professional soccer based on training 
load analysis. The developed model demonstrated an accu-
racy of 0.78, sensitivity of 0.73, and specificity of 0.85, 
highlighting its effectiveness in identifying early signs of 
injury risk, based on seven external and internal training 
load features (three acute and four “chronic”). Importantly, 
this study showed that a surge in fast running (HSR and 
sprints), combined with increased physiological and meta-
bolic overload indicated by increased heart rate-related in-
ternal load metrics, may contribute to muscle injuries. 
These findings may be used to further develop a methodol-
ogy based on training load analysis with the addition of 
other features, such as strength and endurance measure-
ments, aiming to reduce the incidence of muscle injuries in 
soccer. By identifying the important training load parame-
ters, coaches may aim to control unnecessary surges of 
their values during short and longer training periods. Also, 
optimal training programs based on these findings can po-
tentially reduce injury risks and promote athlete well-being 
and performance sustainability in professional soccer.
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Key points 
 
 The machine learning model used seven key input training 

load variables that provided high accuracy classification of 
muscle injuries in soccer. 

 Three of the variables concerned acute load deviations 
(number of sprints, training load score-incorporating heart 
rate and muscle load- and time of heart rate at the 90-100% 
of maximum), while the other four concerned cumulative 
load features (total distance, high speed and sprint running 
distance and training load score). 

 By identifying the important parameters, coaches may pre-
vent muscle injuries by controlling surges of training load 
during training and competition. 
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