Table 5. Chosen results of the best subset multiple regression methodology.
VRmax |
VRcont |
Sample |
R2 |
Xi |
p |
β |
Sample |
R2 |
Xi |
p |
β |
FH1 |
0.794 |
|
FH1 |
0.763 |
|
VcontPTilt |
0.000 |
-0.245 |
VmaxRKFE |
0.000 |
-0.373 |
VcontRShIE |
0.000 |
-0.535 |
VmaxRHIE |
0.000 |
-0.296 |
VmaxRShAA |
0.000 |
0.376 |
VmaxPObli |
0.000 |
0.293 |
VminRHFE |
0.000 |
-0.434 |
VminSObli |
0.000 |
-0.553 |
VminRAFE |
0.000 |
0.486 |
VminRHFE |
0.000 |
-0.622 |
FH2 |
0.803 |
|
FH2 |
0.818 |
|
VcontRHAA |
0.000 |
-0.296 |
VcontRHAA |
0.000 |
-0.291 |
VcontLShIE |
0.000 |
0.851 |
VcontLShIE |
0.000 |
0.800 |
VcontRShAA |
0.000 |
-0.449 |
VcontRShAA |
0.000 |
-0.390 |
VcontRShIE |
0.000 |
-1.372 |
VcontRShIE |
0.000 |
-1.398 |
VminLShFE |
0.000 |
-1.003 |
VminLShFE |
0.000 |
-1.088 |
FH3 |
0.905 |
|
FH3 |
0.892 |
|
VcontLShAA |
0.000 |
-0.274 |
VcontLShAA |
0.000 |
-0.266 |
VcontRShIE |
0.000 |
-0.816 |
VcontRShIE |
0.000 |
-0.781 |
VmaxLHFE |
0.000 |
-0.312 |
VmaxLHFE |
0.000 |
-0.284 |
VmaxRAFE |
0.000 |
-0.234 |
VmaxRAFE |
0.000 |
-0.240 |
VminRHFE |
0.000 |
-0.498 |
VminRHFE |
0.000 |
-0.511 |
BH1 |
0.833 |
|
BH1 |
0.755 |
|
VcontRWIE |
0.000 |
0.417 |
VcontSRot |
0.000 |
-0.447 |
VcontSRot |
0.000 |
-0.540 |
VcontRShFE |
0.000 |
-0.261 |
VmaxRShAA |
0.000 |
0.584 |
VcontRShAA |
0.000 |
0.440 |
VmaxLEFE |
0.001 |
-0.152 |
VmaxRShAA |
0.000 |
0.817 |
VminLHFE |
0.000 |
-0.308 |
VminLShAA |
0.002 |
0.203 |
BH2 |
0.666 |
|
BH2 |
0.465 |
|
VcontREFE |
0.000 |
0.295 |
VcontREIE |
0.001 |
-0.253 |
VmaxLHAA |
0.000 |
0.599 |
VmaxLHAA |
0.000 |
0.457 |
VmaxPTilt |
0.000 |
-0.347 |
VmaxLKFE |
0.001 |
-0.277 |
VmaxRShAA |
0.000 |
0.701 |
VmaxRShAA |
0.000 |
0.486 |
VminRHAA |
0.000 |
0.327 |
VminRHAA |
0.005 |
0.296 |
BH3 |
0.816 |
|
BH3 |
0.744 |
|
VmaxLAFEm |
0.000 |
0.288 |
VmaxLAFE |
0.000 |
0.224 |
VmaxRShIE |
0.000 |
0.237 |
VmaxRShAA |
0.000 |
0.511 |
VmaxRShAA |
0.000 |
0.433 |
VmaxLShFE |
0.000 |
-0.258 |
VminRShIE |
0.000 |
-0.223 |
VminRShIE |
0.000 |
-0.349 |
VminLHAA |
0.000 |
-0.402 |
VminLHAA |
0.000 |
-0.418 |
In used regression methodology (Y) is related to predictors (X
i) according to the mean function: Y = α + b
i . X
i +, where alfa is the intercept, b
i are the coefficients of regression for the i-predictor and β is the standard error of the estimation. The squared multiple correlation of the model (R
2) explains % of the variability of the data. p - the level of significance, β= the beta correlation coefficient.