This study examined the effects of poles when walking on the rate of perceived exertion (RPE), physiological and kinematics parameters, and upon the mean ratio between locomotor and respiratory rhythms. Twelve healthy male and female volunteers, aged 22 to 49 years old, completed on a motorized treadmill in a counterbalanced randomized order 12 walking trials for 10 min at an individually preferred walking speed, with three grades (horizontal level, uphill or downhill with a slope of 15%), with and without hiking poles and a load carriage of 15% of body mass. During all testing sessions, heart rate (HR), oxygen consumption (VO2), ventilation (VE), tidal volume (VT), breathing frequency (Bf), and stride frequency were recorded continuously during the last 5-min of each trial. At the end of each trial, subjects were asked to give RPE. Energy cost (EC) and VE increased significantly with the grade (-15% < 0% < +15%) and with the carrying load. VT was significantly less important with hiking poles, while Bf was significantly more elevated. VO2 and EC increased (p < 0.05) with the use of the hiking poles only during the downhill trials. No significant effect of poles was observed on HR, RPE, and preferred walking speed. The average ratio between the locomotor and respiratory frequencies was significantly influenced by the three experimental factors tested. There was a significant relationship between average ratio of leg movement per breath and EC of walking among all conditions (r = 0.83, n = 12). These results suggest that the use of the hiking poles had a significant influence on the respiratory and energetic responses only during downhill walking. |