Research article - (2012)11, 736 - 744
Reliability and Validity of Physiological Data Obtained Within a Cycle-Run Transition Test in Age-Group Triathletes
Veronica Vleck1,, Gregoire P. Millet2, Francisco Bessone Alves1, David J. Bentley3
1CIPER, Faculty of Human Kinetics, Technical University of Lisbon, Cruz Quebrada-Dafundo, Portugal
2University of Lausanne, ISSUL Institute of Sport Sciences, Batiment Vidy, Lausanne, Switzerland
3The School of Medical Science, the University of Adelaide, Adelaide, Australia

Veronica Vleck
✉ CIPER. Faculty of Human Kinetics. Technical University of Lisbon. Estrada da Costa. Cruz Quebrada-Dafundo. 1499-002 Portugal
Email: vvleck@fmh.utl.pt
Received: 29-06-2012 -- Accepted: 16-10-2012
Published (online): 01-12-2012

ABSTRACT

This study examined the validity and reliability of a sequential “Run-Bike-Run” test (RBR) in age-group triathletes. Eight Olympic distance (OD) specialists (age 30.0 ± 2.0 years, mass 75.6 ± 1.6 kg, run VO2max 63.8 ± 1.9 ml· kg-1· min-1, cycle VO2peak 56.7 ± 5.1 ml· kg-1· min-1) performed four trials over 10 days. Trial 1 (TRVO2max) was an incremental treadmill running test. Trials 2 and 3 (RBR1 and RBR2) involved: 1) a 7-min run at 15 km· h-1 (R1) plus a 1-min transition to 2) cycling to fatigue (2 W· kg-1 body mass then 30 W each 3 min); 3) 10-min cycling at 3 W· kg-1 (Bsubmax); another 1-min transition and 4) a second 7-min run at 15 km· h-1 (R2). Trial 4 (TT) was a 30-min cycle - 20-min run time trial. No significant differences in absolute oxygen uptake (VO2), heart rate (HR), or blood lactate concentration ([BLA]) were evidenced between RBR1 and RBR2. For all measured physiological variables, the limits of agreement were similar, and the mean differences were physiologically unimportant, between trials. Low levels of test-retest error (i.e. ICC <0.8, CV<10%) were observed for most (logged) measurements. However [BLA] post R1 (ICC 0.87, CV 25.1%), [BLA] post Bsubmax (ICC 0.99, CV 16.31) and [BLA] post R2 (ICC 0.51, CV 22.9%) were least reliable. These error ranges may help coaches detect real changes in training status over time. Moreover, RBR test variables can be used to predict discipline specific and overall TT performance. Cycle VO2peak, cycle peak power output, and the change between R1 and R2 (deltaR1R2) in [BLA] were most highly related to overall TT distance (r = 0.89, p < 0. 01; r = 0.94, p < 0.02; r = 0.86, p < 0.05, respectively). The percentage of TR VO2max at 15 km· h-1, and deltaR1R2 HR, were also related to run TT distance (r = -0.83 and 0.86, both p < 0.05).

Key words: Multi-discipline, reproducibility, time-trial, test, adaptation

Key Points
  • It is extremely important to ensure that the measurements made as part of research or athlete support work are adequately reliable and valid.
  • The modified Millet triathlete “Run-Bike-Run” (RBR) test allows both for important physiological variables that are normally obtained from isolated tests (such as cycle VO and peak power output) to be determined, and for measurement of the extent to which an athlete adapts to a cycle-run transition (T2).
  • The data reported in this paper regarding the test-retest reliability of the modified RBR, and its validity relative to cycle-run time-trial performance in male age-group triathletes, may help coaches determine the extent to which changes on test measures are likely due to training adaptation rather than to measurement error.








Back
|
Full Text
|
PDF
|
Share