Research article - (2015)14, 825 - 833
Changes in Indirect Markers of Muscle Damage and Tendons After Daily Drop Jumping Exercise with Rapid Load Increase
Vidas Paleckis1, Mantas Mickevičius1, Audrius Snieckus1, Vytautas Streckis1, Mati Pääsuke2, Saulius Rutkauskas3, Rasa Steponavičiūtė4, Albertas Skurvydas1, Sigitas Kamandulis1,
1Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
2Institute of Exercise Biology and Physiotherapy, University of Tartu, Tartu, Estonia
3Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
4Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania

Sigitas Kamandulis
✉ Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, LT-44221 Kaunas, Lithuania
Email: sigitas.kamandulis@lsu.lt
Received: 04-08-2015 -- Accepted: 03-10-2015
Published (online): 24-11-2015

ABSTRACT

The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement.

Key words: Stretch-shortening cycle, neuromuscular adaptation, electrical stimulation, Achilles tendon, patellar tendon

Key Points
  • Frequent drop jump training induces activation mode dependent muscle torque depression late in the training period.
  • No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period.
  • Longitudinal effect for jump height but not for muscle strength is evident after the whole training period.








Back
|
Full Text
|
PDF
|
Share