Research article - (2016)15, 344 - 351
Relationship between Leg Mass, Leg Composition and Foot Velocity on Kicking Accuracy in Australian Football
Nicolas H. Hart1,2,, Sophia Nimphius3, Tania Spiteri4, Jodie L. Cochrane3, Robert U. Newton1
1Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
2Fremantle Dockers Football Club, Perth, W.A., Australia
3Centre for Exercise and Sport Science Research, Edith Cowan University, Perth, W.A., Australia
4School of Health Science, University of Notre Dame, Perth, W.A., Australia

Nicolas H. Hart
✉ Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia, Australia – 6027
Email: n.hart@ecu.edu.au
Received: 04-02-2016 -- Accepted: 19-04-2016
Published (online): 23-05-2016

ABSTRACT

Kicking a ball accurately over a desired distance to an intended target is arguably the most important skill to acquire in Australian Football. Therefore, understanding the potential mechanisms which underpin kicking accuracy is warranted. The aim of this study was to examine the relationship between leg mass, leg composition and foot velocity on kicking accuracy in Australian Football. Thirty-one Australian Footballers (n = 31; age: 22.1 ± 2.8 years; height: 1.81 ± 0.07 m; weight: 85.1 ± 13.0 kg; BMI: 25.9 ± 3.2) each performed ten drop punt kicks over twenty metres to a player target. Athletes were separated into accurate (n = 15) and inaccurate (n = 16) kicking groups. Leg mass characteristics were assessed using whole body DXA scans. Foot velocity was determined using a ten-camera optoelectronic, three-dimensional motion capture system. Interactions between leg mass and foot velocity evident within accurate kickers only (r = -0.670 to -0.701). Relative lean mass was positively correlated with kicking accuracy (r = 0.631), while no relationship between foot velocity and kicking accuracy was evident in isolation (r = -0.047 to -0.083). Given the evident importance of lean mass, and its interaction with foot velocity for accurate kickers; future research should explore speed-accuracy, impulse-variability, limb co-ordination and foot-ball interaction constructs in kicking using controlled with-in subject studies to examine the effects of resistance training and skill acquisition programs on the development of kicking accuracy.

Key words: muscle, impulse, relative, variability, coordination

Key Points
  • Accurate kickers expressed a very strong inverse relationship between leg mass and foot velocity. Inaccurate kickers were unable to replicate this, with greater volatility in their performance, indicating an ability of accurate kickers to mediate foot velocity to compensate for leg mass in order to deliver the ball over the required distance.
  • Accurate kickers exhibited larger quantities of relative lean mass and lower quantities of relative fat mass in their kicking leg. Higher relative lean mass reduces the relative muscular impulses required to produce a given action, allowing greater limb control with proportionately reduced volitional effort.
  • Kicking accuracy was unable to be explained by either foot velocity or leg mass in isolation; rather, it was the co-contribution and interrelation of these characteristics which were the discriminatory factors between accurate and inaccurate kickers.








Back
|
Full Text
|
PDF
|
Share