Research article - (2018)17, 124 - 133
Impact of Incline, Sex and Level of Performance on Kinematics During a Distance Race in Classical Cross-Country Skiing
Thomas Stöggl1,, Boye Welde2, Matej Supej3,4, Chiara Zoppirolli5,6, Carsten G. Rolland2, Hans-Christer Holmberg2,4, Barbara Pellegrini5,6
1Department of Sport Science and Kinesiology, University of Salzburg, Salzburg, Austria
2School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway
3Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
4Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
5CeRiSM, Center of Research in Mountain Sport and Health, University of Verona, Rovereto, Italy
6Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy

Thomas Stöggl
✉ Department of Sport Science and Kinesiology, Schlossallee 49, 5400 Hallein/Rif, Austria
Email: thomas.stoeggl@sbg.ac.at
Received: 20-09-2017 -- Accepted: 07-12-2017
Published (online): 01-03-2018

ABSTRACT

Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differences on flat terrain (p < 0.001) and largest relative differences for cycle velocity and length on intermediate and uphill terrain. External power output rose with increasing incline, being higher for men and FS (p < 0.001). Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill was the best predictor for the women (both p < 0.001). In conclusion, incline, sex and level of performance influenced cycle characteristics and power output. Greatest absolute sex gap was on flat terrain, whereas the relative difference was greatest on intermediate and steep uphill terrain. We recommend usage of more DP and/or DPK, and less DIA and fewer transitions between techniques on intermediate terrain. Predictors of race performance are sex specific with greatest potential for enhancing performance on flat terrain for men and on steep uphill terrain for women.

Key words: Cycle characteristics, diagonal stride, double poling, kick double poling, power output, video analysis

Key Points
  • There was a main effect of sex and level of performance, with longer and more rapid cycles by male than female skiers and by faster than slower skiers.
  • The largest absolute sex differences in cycle velocity and length were observed on flat terrain, with these differences narrowing as the incline rose. However, the greatest relative sex differences were in cycle velocity on the intermediate terrain (23.3%) and for cycle length on steep uphill terrain (27.0%).
  • The men employed DP and DPK to a greater extent and with fewer transitions on intermediate terrain than the women. Faster skiers (especially women) employed DPK to a greater and DIA to a lesser extent than the slower skiers, with approximately equal usage of DP.
  • Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill terrain was the best predictor in the case of the women.
  • As the incline increased, cycle velocity, cycle length and pole swing time were reduced, while poling time and external power output rose. A J-shaped pattern with respect to cycle rate was observed, with the lowest values on intermediate and highest on steep uphill terrain.








Back
|
Full Text
|
PDF
|
Share