This study aimed to provide the first description of the whole-body bioimpedance vector of nine non-professional triathletes, and to assess body mass (BM) and vector variations evoked by an ultra-endurance triathlon event. Anthropometric and bioelectrical assessments were performed before (PRE), after (POST), and 48 hours following the race (POST48h). Bioimpedance vector analysis (BIVA) showed triathletes’ vectors placed to the left of the major axis and mostly outside the 50% tolerance ellipse of the reference population. Vector migration in POST indicated dehydration, paralleled by a decrease in BM (p = 0.0001). Increased hydration status from POST to POST48h was suggested by a reversed vector migration and increased BM (p = 0.0001). Compared to PRE, POST48h values reflected fluid retention by changes in BIVA, while BM was still lower (p = 0.0001). Racing time was positively related to basal resistance -R/h- (r = 0.68; p = 0.04) and bioimpedance -Z/h- (r = 0.68; p = 0.045). Besides, basal R/h and Z/h were positively related to PRE-to-POST changes of R/h and Z/h (r = 0.80; p = 0.009). PRE-to-POST changes of R/h and Z/h were positively related to racing time (r = 0.80, p = 0.01) and internal workload (r = 0.80, p ≤ 0.02). Notwithstanding the lack of significant correlation between BM and bioelectrical parameters, the vector’s behavior was explained from a multifactorial perspective (including BM variations) by using multiple regression analysis. On the other hand, BM changes were not related to racing time, internal workload or energy deficit (ranges: r = - 0.46 to 0.65; p = 0.06 to 0.98). In conclusion, these triathletes exhibit a specific bioelectrical distribution. Furthermore, vector migration was consistent with fluid loss induced by the event. Finally, vector analysis seems to provide additional information about hydration changes 48h after the event in comparison with BM alone. |