An affordable player monitoring solution could make the evaluation of external loading more accessible across multiple levels of football (soccer). The present study aimed to determine the accuracy of a newly designed and low-cost Global Positioning System (GPS) whilst performing match-specific movement patterns. Sixteen professional male football players (24 ± 3 years) were assigned a GPS device (TT01, Tracktics GmbH, Hofheim, Germany) and completed two experimental trials. In each trial, a continuous protocol including seven movements (sideways cornering, diagonal cornering, accelerating, decelerating, backwards jogging, shuttle running, and skipping) adding up to 500 m, was completed. Time-motion data was compared with criterion distance and velocity (photo-cell timing gates and radar). Validity was assessed through the standard error of the estimate (SEE) and reliability through the coefficient of variation (CV; both with 95% confidence limits). For the total distance covered during the protocol, the system was found to be valid (SEE = 3.1% [2.2; 5.8]) and reliable (intra-device CV = 2.0% [1.2; 7.6]). Similar results were found for velocity (SEE = 3.4% [2.6; 4.8], CV = 4.7% [3.2; 8.5]). In conclusion, the present GPS system, a low-cost solution, was found to be a valid and reliable tool for measuring physical loading during football-specific movements. |