Research article - (2022)21, 104 - 111
DOI:
https://doi.org/10.52082/jssm.2022.104
Sex Moderates the Relationship between Perceptual-Motor Function and Single-Leg Squatting Mechanics
Jennifer A. Hogg1,, Jason M. Avedesian2, Jed A. Diekfuss3,4,5, Shellie N. Acocello1, Rylee D. Shimmin6, Elisabeth A. Kelley7, Deborah A. Kostrub8, Gregory D. Myer3,4,5,9, Gary B. Wilkerson1
1Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
2Clemson University Athletic Department, Clemson, SC, USA
3Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
4Emory Sports Medicine Center, Atlanta, GA, USA
5Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
6University of North Georgia, Dahlonega, GA, USA
7Erlanger Sports and Health Institute, Chattanooga, TN, USA
8Hughston Clinic Orthopaedics, Nashville, TN, USA
9The Micheli Center for Sports Injury Prevention, Waltham, MA, USA

Jennifer A. Hogg
✉ PhD University of Tennessee Chattanooga, 615 McCallie Ave., Chattanooga, TN, 37403, USA
Email: jennifer-hogg@utc.edu
Received: 25-11-2021 -- Accepted: 28-12-2021
Published (online): 15-02-2022

ABSTRACT

To examine the isolated and combined effects of sex and perceptual-motor function on single-leg squatting mechanics in males and females. We employed a cross-sectional design in a research laboratory. Fifty-eight females (22.2 ± 3.5 yrs, 1.60 ± .07 m, 64.1 ± 13.0 kg) and 35 males (23.5 ± 5.0 yrs, 1.80 ± .06m, 84.7 ± 15.3 kg) free from time-loss injury in the six months prior, vertigo, and vestibular conditions participated in this study. Independent variables were sex, perceptual-motor metrics (reaction time, efficiency index, conflict discrepancy), and interaction effects. Dependent variables were peak frontal plane angles of knee projection, ipsilateral trunk flexion, and contralateral pelvic drop during single-leg squatting. After accounting for the sex-specific variance and perceptual-motor function effects on frontal plane squatting kinematics, female sex amplified the associations of: higher reaction time, lower efficiency index, and higher conflict discrepancy with greater right ipsilateral peak trunk lean (R2 = .13; p = .05); higher reaction time, lower efficiency index, and higher conflict discrepancy with decreased right contralateral pelvic drop (R2 = .22; p < .001); higher reaction time and lower conflict discrepancy with greater right frontal plane knee projection angle (R2 = .12; p = .03); and higher reaction time with greater left frontal plane knee projection angle (R2 = .22; p < .001). Female sex amplified the relationship between perceptual-motor function and two-dimensional frontal plane squatting kinematics. Future work should determine the extent to which perceptual-motor improvements translate to safer movement strategies.

Key words: Flanker, valgus, trunk lean, pelvic drop, anterior cruciate ligament, biomechanics

Key Points
  • Sex moderated the relationship between perceptual-motor function and biomechanics, such that females with slower reaction times displayed more medially-projected knees, while males with slower reaction times exhibited altered frontal plane pelvic motion.
  • Clinically feasible choice reaction time measures can be used as gross indicators of one’s propensity for altered single-leg squatting mechanics.
  • Future work should investigate the extent to which these relationships can be modified in each sex.








Back
|
Full Text
|
PDF
|
Share