Research article - (2022)21, 608 - 615
DOI:
https://doi.org/10.52082/jssm.2022.608
Effects of Speed and Amplitude of Dynamic Stretching on the Flexibility and Strength of the Hamstrings
Kosuke Takeuchi1,, Masatoshi Nakamura2, Shingo Matsuo3, Kazunori Akizuki4, Takamasa Mizuno5
1Department of Physical Therapy, Kobe International University, Kobe-shi, Hyogo, Japan
2Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki-cho, Saga, Japan
3Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Handa-shi, Aichi, Japan
4Department of Physical Therapy, Mejiro University, Saitama-shi, Saitama, Japan
5Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya-shi, Aichi, Japan

Kosuke Takeuchi
✉ Faculty of Rehabilitation, Kobe International University, 9-1-6 Koyocho-naka, Higashinada-ku, Kobe, Hyogo 658-0032, Japan
Email: ktakeuchi@kobe-kiu.ac.jp
Received: 09-10-2022 -- Accepted: 14-11-2022
Published (online): 01-12-2022

ABSTRACT

Dynamic stretching for more than 90 seconds is useful for improving muscle strength, although dynamic stretching for 30 seconds or less is commonly used in sports settings. The effects of dynamic stretching are influenced by the speed and amplitude of stretching, but no study examined these factors for 30 seconds of dynamic stretching. Therefore, the purpose of the present study was to examine the effects of speed (fast- or slow-speed) and amplitude (normal- or wide amplitude) of dynamic stretching for 30 seconds on the strength (peak torque during maximum isokinetic concentric contraction) and flexibility (range of motion, passive torque at maximum knee extension angle, and muscle-tendon unit stiffness) of the hamstrings. The passive torque and muscle-tendon unit stiffness reflect stretching tolerance and viscoelastic properties of the hamstrings, respectively. Fifteen healthy participants performed 4 types of 30 seconds of dynamic stretching. The muscle strength and flexibility were measured before and immediately after the dynamic stretching. The range of motion did not change after dynamic stretching at low speed and normal amplitude (p = 0.12, d = 0.59, 103.3%), but it was increased by other interventions (p < 0.01, d = 0.90-1.25, 104.5-110.1%). In all interventions, the passive torque increased (main effect for time, p < 0.01, d = 0.51 – 0.74, 111.0 – 126.9%), and muscle-tendon unit stiffness did not change. The muscle strength increased only after dynamic stretching at fast speed with normal amplitude (p < 0.01, d = 0.79, 107.1%). The results of the present study indicated that 30 seconds of dynamic stretching at fast speed and with normal amplitude can be beneficial for the measured parameters.

Key words: Range of motion, peak torque, passive torque, stiffness, warm-up routine, short duration

Key Points
  • We investigated the acute effects of different speeds and intensities of dynamic stretching on strength and flexibility of the hamstrings
  • In all interventions, the passive torque increased, and muscle-tendon unit stiffness did not change.
  • The muscle strength of the hamstrings increased only after dynamic stretching at fast speed (60rpm) with normal amplitude (within range of motion).








Back
|
Full Text
|
PDF
|
Share