Research article - (2023)22, 446 - 453
DOI:
https://doi.org/10.52082/jssm.2023.447
Effects of Maximal Eccentric Trunk Extensor Exercise on Lumbar Extramuscular Connective Tissue: A Matched-Pairs Ultrasound Study
Andreas Brandl1,2,3, Jan Wilke4, Christoph Egner2, Tobias Schmidt5,6,† , Robert Schleip2,7,† ,
1Department of Sports Medicine, Institute for Human Movement Science, Faculty for Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
2Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
3Vienna School of Osteopathy, Vienna, Austria
4Department of Movement Sciences, University of Klagenfurt, Klagenfurt, Austria
5Osteopathic Research Institute, Hamburg, Germany
6Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
7Department of Sport and Health Sciences, Conservative and Rehabilitative Orthopedics, Technical University of Munich, Munich, Germany
† These authors contributed equally to this work

Robert Schleip
✉ Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
Email: robert.schleip@tum.de
Received: 23-05-2023 -- Accepted: 31-07-2023
Published (online): 01-09-2023

ABSTRACT

Recently, it has been shown that the extramuscular connective tissue (ECT) is likely involved in delayed onset muscle soreness (DOMS). Therefore, the aim of the present study was to investigate the effects of maximal trunk extension eccentric exercise (EE) on ECT thickness, self-reported DOMS, ECT stiffness, skin temperature, and possible correlations between these outcomes. Healthy adults (n = 16, 29.34 ± 9.87 years) performed fatiguing EE of the trunk. A group of highly active individuals (TR, n = 8, > 14 h of sport per week) was compared with a group of less active individuals (UTR, n = 8, < 2 h of sport per week). Ultrasound measurements of ECT thickness, stiffness with MyotonPro and IndentoPro, skin temperature with infrared thermography, and pain on palpation (100 mm visual analog scale, VAS) as a surrogate for DOMS were recorded before (t0), immediately (t1), 24 h (t24), and 48 h (t48) after EE. ECT thickness increased after EE from t0 to t24 (5.96 mm to 7.10 mm, p = 0.007) and from t0 to t48 (5.96 mm to 7.21 mm, p < 0.001). VAS also increased from t0 to t24 (15.6 mm to 23.8 mm, p < 0.001) and from t0 to t48 (15.6 mm to 22.8 mm, p < 0.001). Skin temperature increased from t1 to t24 (31.6° Celsius to 32.7° Celsius, p = 0.032) and t1 to t48 (31.6° Celsius to 32.9° Celsius, p = 0.003), while stiffness remained unchanged (p > 0.05). Correlation analysis revealed no linear relationship between the outcomes within the 48-hour measurement period. The results may confirm previous findings of possible ECT involvement in the genesis of DOMS in the extremities also for the paraspinal ECT of trunk extensors. Subsequent work should focus on possible interventions targeting the ECT to prevent or reduce DOMS after strenuous muscle EE.

Key words: DOMS, ultrasound, connective tissue, eccentric exercise

Key Points
  • Eccentric exercise increases the thickness of lumbar extramuscular connective tissue.
  • The results may confirm previous findings on the involvement of fascia in DOMS.
  • A focus on fascial interventions for prevention or reduction of DOMS could be promising.








Back
|
Full Text
|
PDF
|
Share