Case report - (2014)13, 211 - 216
Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick
Nicholas P. Linthorne, Thomas G. Stokes
Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, Middlesex, United Kingdom

Nicholas P. Linthorne
✉ Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Email: nick.linthorne@brunel.ac.uk
Received: 15-07-2013 -- Accepted: 27-09-2013
Published (online): 20-01-2014

ABSTRACT

This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9°) was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°). The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle.

Key words: Biomechanics, kinematics, projectile

Key Points
  • The optimum projection angle in a rugby place kick is about 30°.
  • The optimum projection angle is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased.
  • Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle.








Back
|
Full Text
|
PDF
|
Share