There have been a number of papers on the mechanics of instep kicking from youth to the elite level (Asami and Nolte, 1983; Barfield, 1993; Barfield, 1995; Barfield, 1997; Narici et al., 1988; Rodano and Tavana, 1993), but all have used male subjects. In addition there have been no investigations involving elite females. Identification of kinematic variable differences may play a critical role in teaching and training of aspiring young female soccer players. The temporal interactions investigated and the variables chosen for analysis were those previously demonstrated in earlier studies to be important in successful instep kicking (Barfield, 1995; Abo-Abdo, 1981; Dos Anjos and Adrian, 1986). The IK was selected for analysis because, at this time, there are no known studies of this principal skill among elite female soccer players, and the importance of this principle skill in the game of soccer. Dominant and nondominant limbs were examined because of the importance of developing similar bilateral ability, especially in a skill as crucial to success in soccer as instep kicking. Overall, our apriori hypotheses were supported by the data analysis of our sample. Females generally generated less ball velocity than their male counterparts on dominant and nondominant sides, and the kinematic variables investigated were lower in females compared with the males, however the differences were small. An unanticipated finding was that one of the female subjects generated greater ball velocity on two of her three kicks than the men on the dominant side. With her three values subtracted from the female average the female mean for ball speed for the dominant side dropped to 20.55 m/s-1; the same value as the one elite females lowest velocity kick. With the single female athlete's instep kicking velocity values subtracted from the female mean the differences between the two groups in our sample is even greater. The mean of the three kicks on the dominant side for this one elite woman was 24.15 m.s-1. On the nondominant side the differentials for ball velocity are even more striking. If the one elite female player with the greatest ball speed has her kicking velocity values subtracted from the female mean the variable drops to 18.18 m.s-1, while the mean of the three nondominant kicks for the one elite female is 23.0 m.s-1, similar to the male mean, 23.6 m.s-1. Maximum toe velocity is significantly greater in males on dominant and nondominant sides (Tables 2 and 3">3). Although female subjects generally showed lower maximum toe velocities than did the male subjects for dominant and nondominant legs, one female subject showed a mean maximum toe velocity of 23.4 m.s-1 with her dominant leg, which is 3 m.s-1 faster than the male values on the dominant side. On the nondominant side this one female subject showed a mean value, for this variable, of 20.85 m.s-1, which is over 2 m.s-1 faster than the elite male subjects (18.5 m.s-1). These values are similar to an earlier study that examined this variable (Barfield, 1995). Female subjects' BC toe velocity on dominant and nondominant sides are 86% and 84% respectively of the male value, as seen in Tables 2 and 3">3, yet are similar to values reported by Barfield, 1995. The lone elite female athlete had a mean value of 20.13 m.s-1 for the dominant side and 18.35 m.s-1 for the nondominant side. Both mean values were greater than the men, demonstrating that this single female soccer athlete can kick as fast as elite men when kinematic variables other than eventual ball velocity are considered. Deleting this female subject from the data analysis would significantly reduce the mean of the kinematic variables and compound the differences of the kinematic variables between genders. Differences in magnitude between males and females for mean toe velocity between SFC and BC are not great, especially when compared with some of the other examined variables. Since there are such clear differences in toe velocity at BC and not such differences when the mean value between SFC and BC is examined it may be speculated that males and the single elite female generate speed of this distal segment at the optimal time, that is, at foot/ball contact, whereas the other females in our study do not. The mean values for toe acceleration for males and females in this investigation are similar in magnitude on dominant and nondominant sides and closely mimic values from an earlier study examining this variable (Barfield, 1993). The single elite female had a mean of 85.04 m.s-2 compared with the male values of 78.33 m.s-2 on the dominant side and 63.32 m.s-2 compared with 63.27 m.s-2 on the nondominant side, supporting the hypothesis that elite males generally demonstrate larger kinematic variables than elite women. Ankle velocity at BC was significantly different on dominant and nondominant sides, and between genders and are similar to the findings from an earlier study (Barfield, 1995). The one elite female kicker had values on dominant and nondominant sides approaching the male values (13.69 m.s-1 & 11.29 m.s-1 respectively). In a maximal effort activity, like instep kicking, athletes would want this variable to be maximal at BC so that the ball can be propelled with maximal speed. With the one female value taken from the overall female values their mean decreases further for this variable. Unexpectedly, knee angular velocity at BC was not statistically different between males and females. As the kicking foot approaches contact with the ball, kicking for maximal ball velocity demands optimal angular velocity at the knee. Interestingly, of the seven kinematic variables only dominant knee angular velocity was greater in females than in the males. When the one elite female kicker's values are taken from the calculations on the D side the female knee angular velocity value increases 0.21 rad.s-1, which means females have a mean knee angular velocity of 0.75 rad.s-1 faster than men at BC. Extension torque at the knee prior to BC creates the moment necessary to propel the ball however, the flexion moment (280 N*m) immediately following BC has been shown to be larger than the extensor moment to reduce the injury potential associated with hyperextension. The temporal association of these two events dictates kicking velocity success. Flexion torque initiated too early in the kicking movement slows the limb and kicking foot prior to BC, subsequently decreasing eventual ball velocity. On the other hand, limiting the milliseconds of time available to dissipate stored energy from the kick increases the muscle force required to slow the extending limb and places the kicker at risk for injury because of the large loads placed on the knee joint and soft tissues under tension immediately following the kick (Gainor et al., 1978). Gainor and colleagues have demonstrated that at the termination of knee extension, when kicking with maximal effort, the hamstrings work eccentrically to slow knee extension. This appears to be the case with the males and the one elite female in this study. The one elite female kicker had a mean angular knee velocity on the dominant side of 18.8 rad.s-1, 0.98 rad.s-1 slower at BC than the mean for the other four women. On the ND side the one elite female had an angular velocity at the knee 1.5 rad.s-1 slower than the mean for the other four females and 1.75 rad.s-1 slower than the males. |