Muscle weakness and functional instability at the ankle were found to exist at the same time. The chronically unstable ankle was significantly weaker than the healthy ankle especially for the eccentric evertors. While this observed relation between peroneal muscle weakness and functional instability supported earlier findings (Bosien et al., 1955; Tropp, 1986), a similar finding was also observed for the invertor muscle, which is a new finding (Hartsell et al., 1997; Munn et al., 2003). The chronically unstable ankle would appear to be at risk of re-injury. Ligamentous injury typically occurs when the peroneal muscles are called upon to work eccentrically in response to high velocity movements (Lentell et al., 1990). Few studies have investigated eccentric evertor and invertor ankle strength in functional ankle instability. To date, three studies have compared the injured with the non-injured limb in subjects with functional ankle instability. None of the studies showed a deficit in eccentric evertor muscle strength (Bernier et al., 1997; Heitmann et al., 1997; Kaminski et al., 1999; Munn et al., 2003). Hartsell et al. (1997) established eccentric evertor muscle weakness comparing patients with normal subjects. In our study, eccentric evertor peak torque strength of the evertor muscles was 28.9±5.3 Nm in CAI and 37.3±5.8 Nm in the control group (p < 0.01). Eccentric evertor strength weakness might be explained as follows. Biomechanical changes around the ankle joint caused by chronically unstable ankle deficiency might affect eccentric activity to a greater degree than healthy ankle joints. In addition, evertor muscle atrophy might affect eccentric activity at the cellular level. It is not possible to assess from our study which of these factors is the cause of the deficits in evertor eccentric peak torque relative to the healthy ankle. The finding that the concentric invertor peak torque was not significantly different between the CAI and healthy groups indicates that strength losses were not a result of altered joint motion dynamics, but rather from a deficiency in the muscles themselves or their neural control mechanism. It was previously reported that concentric invertor muscle strength deficit was observed in the chronic unstable ankle (Wilkerson et al., 1997). In a recent study, concentric invertor muscle weakness was not observed when comparing the normal and disabled limbs (Munn et al., 2003). They supported the idea that eccentric strength deficits of the invertor muscle may contribute to symptoms of ankle instability through a reduced capacity to control lateral postural sway in weight bearing. In our study, we did not find a concentric invertor muscle strength deficit (CAI Group:18.6±4.5 Nm; Control Group:19.7±3.6 Nm). This data shows that concentric invertor muscle strength may not contribute to chronic ankle instability. Eccentric evertor/concentric evertor and eccentric invertor/concentric invertor strength ratios have been described in individuals with chronically unstable ankle (Hartsell and Spaulding, 1999). However, no previous studies have described the functional Eecc/Icon strength ratio changes associated with CAI and healthy groups. Hartsell and Spaulding (1999) reported that eccentric/concentric strength ratio for the eversion and inversion motions were found to be similar in both groups (injured and healthy groups) and to increase proportionally with increasing velocities, which supports previous research on healthy subjects tested at the elbow and knee. They found that with 120°·sec-1 angular velocity eccentric evertor/concentric evertor strength ratio was 1.72 in the healthy group and 1.83 in patients with chronic ankle instability. The eccentric evertor/concentric evertor strength ratio found in their study contradicts Aagaard’s recent findings (Aagaard et al., 1998). Gibson et al. (2000) showed that the eccentric hamstring/concentric quadriceps strength ratios were similar in ACL deficient and normal limbs . In our study peak Eecc/Icon strength ratio was 1.7 in the CAI and 1.9 in the healthy group. This difference was not significant. It has been suggested that the eccentric/concentric ratio describes functional capacity more accurately than the agonist concentric/antagonist concentric or agonist eccentric/antagonist eccentric muscle strength ratios. This is because normal gait and movement patterns involve interaction between eccentric and concentric antagonist activity, rather than concentric-concentric muscle activity as described by the concentric agonist/antagonist strength ratio (Aagaard et al., 1998). Thus, the finding that the Eecc/Icon strength ratio is similar in CAI and healthy groups may have functional significance. First of all, we can speculate about the neural activity pattern regulating and reducing the loss of strength in evertor and invertor muscles for the continuity of the normal function of the ankle joint in the CAI group. Indeed, Synder-Mackler et al. (1997) suggested that the ability to alter neuromuscular control patterns might be a determining factor in successful compensation after ACL injury. In our study we can not establish either the alterations originating from peripheral proprioceptive receptor or their effects after acute ankle injury. Nevertheless, the theory suggesting a neural pathway was changed that may explain the similarity of Eecc/Icon strength ratios in the CAI and healthy group. In addition to this, evertor eccentric muscle strength and Eecc/Icon strength ratio serve as a preventive force in chronic ankle injury. Therefore, despite the similar Eecc/Icon strength ratios between CAI and the healthy group, during functional activity the protective eccentric evertor response may not operate with enough vigour to reduce functional instability in the CAI. Relating to this result, we suggest that in addition to increased laxity, the loss of eccentric strength in evertor muscles may also account for recurrent ankle traumain the CAI group. Lateral ankle sprain are seen in situations which ligamentory support is decreased and the mechanical axis is compromised (at the end range). Eccentric evertor muscle strength and Eecc/Icon strength ratios toward the end range are the preventive factors in this kind of trauma. The increase in Eecc/Icon strength ratios in both groups can be determined as a mechanism which prevents ankle injury. However, the question remains; why do the recurrent injuries occur in the CAI group? Although the decreases in concentric invertor muscle strength in both groups were similar; the decrease in eccentric evertor muscle strength was significantly greater in the CAI than in the healthy group at 0°, 5°, 10°, 15° and 20°. Eecc/Icon strength ratios were significantly lower in the CAI than the control group, especially at 15° and 20° (Table 2, Figure 1). The loss of eccentric strength in evertor muscle and the the low Eecc/Icon strength ratios toward the end range clarify the recurrent ankle sprain in CAI group. |