The aim of this study was to describe the changes in running speed of national class runners in a 100 km ultra-marathon race to determine if the faster runners showed different changes in their running speeds compared to the slower runners. Runners in group A completed the race at running speeds within 15% of their starting speed (0-10 km) (Figure 1b). Runners from other groups had a greater difference between starting and finishing speeds than the top runners (Table 1, Figure 1b). For example, group G had the greatest difference between starting (0-10 km) and finishing (90-100 km) speeds (1.4 ± 0.8 m·s-1) vs. group A (0.5 ± 0.2 m·s-1) (Table 1). The slower runners had greater variation in running speed compared to faster runners. This is shown by the greater mean change in running speed and the greater CV for mean running speed in slower runners (Table 1, Figure 1a and 1b). The faster runners maintained their initial running speed up to a distance of approximately 50 km before they decreased their running speed (Figure 1a). Their reduction in running speed thereafter was relatively small as the race progressed. In contrast, runners with slower race times were unable to maintain their initial speed as long as the faster runners, and decreased their speed more rapidly. The design of this study does not allow us to explain the mechanisms causing the differences in the rate at which running speed changed, particularly as the perception of effort may be dissociated from running speed (Hampson et al., 2004). However, we can speculate that the inability to maintain running speed may be attributed to physiological mechanisms (Milvy, 1977). It is suggested that although runners utilize about 65% VO2 max during a 100 km race (Davies and Thompson, 1979), there is a large variation in resistance to fatigue and running economy- which would account for different levels of performance (Sjodin and Svedenhag, 1985). Fatigue after prolonged exercise is associated with glycogen depletion (Bosch et al., 1993), which would occur after 40 - 50 km running at about 65% VO2 max (Karlsson and Saltin, 1971). An alternative explanation for the decreased running speed after about 50 km is that there are neuromuscular changes caused by repetitive eccentric muscle actions, resulting in fatigue and impaired muscle function (Nicol et al., 1991). Training habits (Lambert and Keytel, 2000) and genotype (Bouchard et al., 1992) of the runners are additional explanations for the varying reductions in running speed after about 50 km. Also, in accordance with the findings of Foster et al., (1994), the slower runners may not have sufficiently practised their pacing strategies over the longer distance. This observation is interesting and needs further investigation, particularly if it is related to training habits. It is clear that the runners who had faster race times regulated their speed more accurately than the slower runners, and had fewer changes in running speed than the slower runners. This seems to be a consistent finding as groups A and F in 1995 and 1997 had similar patterns of changes in running speed. In accordance with these findings, the current marathon world record of 2:04.55 held by Paul Tergat (Berlin, Germany, September 2003) and the 100 km world record of 6:13.33 held by Takahiro Sunada (Lake Saroma, Japan, June 1998) are additional examples of races run at an almost even pace (CV = 1.2 and 3.2 %, marathon and 100 km world records respectively, Table 2). These examples show that elite world record performances are run with very few changes in running speed. Due to the nature of this study and the information available, certain assumptions had to be made. We assumed that all runners produced similar effort and were equally tired at the end of the race; and that all runners had similar racing experience. In addition, in the analysis we also assumed that the runners were highly motivated and trained because they were representing their countries at an international event. A limitation to this study was that training histories and biographical information were not available. These data would have added more interpretive value to this study, and should be included in future studies of this nature. |