A significant linear force-velocity relationship per subject was found for the range of ball weights (Figure 3). Kaneko et al. (1983) found a curvi-linear relationship. The discrepancy may be explained by the small range of ball weight, which results in a small range of force production. In anyway, the force-velocity relationship, demonstrated in this study has strong resemblance with the classic force-velocity curve for isolated muscle as described by Hill in 1938. It should be noted that this curve does not represent the relationship between force and velocity during a movement in one joint. Rather, for several movements in several joints in which one parameter was systematically altered (ball weight), standard points in the time traces of two variables (maximal force and velocity) were determined and plotted against each other. Although the force-velocity curves for throwing and isolated muscle contraction may be similar, the systems and actions from which these performance curves arise are quite different (e.g., complexity of the movement, the number of factors [e.g. motivation, muscle activity levels, muscle synergies and coordination] and system elements [e.g. nervous system, various muscles and joints] that are involved). One should therefore take extreme care by interpreting the current force-velocity curve as being mainly determined by muscle properties. Still the overall coordination pattern (relative timing) seems independent of load. For example, no changes in the relative timing of the different joints were found in ball weights ranged from 0.2 to 0.8 kg. The observed power of this relative timing of the different joints varied from 0.22 to 0.49. This was rather low as was expected with only 7 subjects. However, correlations per subject over all throws between relative timing of the different joints and ball weight did not show any significant relationship. Some subjects showed a positive relationship while others showed a negative one. This possibly explains the low power together with the low number of subjects. No changes in the relative timing of the different joints were also found in an earlier study (van den Tillaar and Ettema 2000, 2003a, b) regarding effects of instructions, which emphasise on accuracy velocity or both. Thus, with reservation, one may suggest that a force-velocity curve was obtained for a single synergistic musculoskeletal system in overarm throwing with an unaltered neural input. It should be noted that, although the effort was maximal, the muscular effort might not have been maximal. As the time to build up a maximal contractile state may have exceeded the total time available to do so in all muscles in a rapid movement as an overarm throw (Bobbert and van Ingen Schenau, 1990). Future studies, including for example electromyography, may elucidate if with varying ball weight the neural input and muscular coordination pattern is unaltered and if maximal contractile state is affected by the short duration of muscular activation. The maximal velocity at ball release with the different balls were comparable with the release velocity in football passing (Fleisig et al, 1996) and 3 to 5 ms-1 faster than throws of novices with ball weights varying from 0.2 to 0.73 kg (Cross, 2004). In the study of Fleisig et al (1996) the subjects were college and high school quarterbacks with the same weight and height as the subjects in this study. Both throw balls of the amount of 0.409 (this study) and 0.43 kg (Fleisig et al., 1996) with respectively 21.5 and 21 ms-1. However, when the kinematics between the two studies was compared it is shown that the football players were allowed to take a preliminary stride. The football players also performed the throws with a higher maximal elbow extension (30.72 rads-1 vs. 23.53 rads-1) and a higher maximal internal rotation of the shoulder (86.4 rads-1 vs. 42.8 rads-1). The difference in maximal internal rotation of the shoulder is explainable by the time at which this was measured. In this study the point of maximal internal rotation of the shoulder was taken at ball release even when the maximal velocity increased after ball release. This was done, because all movements after ball release do not contribute to an increase of ball velocity. In the study of Fleisig et al (1996) the maximal internal rotation was 6 % after ball release. The timing of the maximal elbow extension of the two studies was on exactly the same time 0.010 before ball release. In Figure 4 it was shown that the maximal internal rotation of the shoulder occurred at ball release and that the maximal extension of the elbow occurred on average only 0.010 seconds before ball release. The angular velocity of these two joints (mean: 42.5 rads-1: internal rotation shoulder, 22.7 rads-1: extension elbow) was also much higher than the angular velocity of the wrist joint (11.3 rads-1). These findings indicate the importance of these different joints to the total contribution of the ball velocity. Ball velocity can, in principle, be calculated from the joint velocities at ball release. However, the different joint velocities lead to ball velocity in a complex interactive manner. For example, elbow extension and internal rotation independently create ball velocity in perpendicular directions. Therefore, these two joint movements (along with others) must be coordinated well to optimise ball velocity. Still, in a first approximation, one can estimate the potential contribution of elbow extension, and internal shoulder rotation according to:
D being distance from elbow to ball (approx. forearm length), α joint velocity and ω joint angle. The angular velocity of the wrist is not included as it approaches zero at ball release (see Figure 4). Equation (1) is the resultant vector of the two vectors obtained from elbow extension and the internal shoulder rotation. Equation (1) can be transformed to obtain relative contribution of elbow extension and shoulder rotation together by taking the ratio of the components over total ball velocity and the ball velocity relative to the shoulder marker. This last analysis was performed to obtain only the contribution of the upper extremity and not of the trunk rotation. On average, the model explains that about 67% (± 9%) of total ball velocity at ball release was contributed by the internal rotation of the shoulder and extension of the elbow. The contribution increased significantly to 73% (± 11%) when the modelled velocity was compared with the ball velocity relative to the shoulder marker. It should be noted that the model assumed a perfect transfer of joint velocity to ball velocity. As mentioned above, this is not likely. Thus, the 67% contribution of the internal rotation of the shoulder and extension of the elbow to the total ball velocity at release is likely overestimated, but still remains extremely high. Other significant contributions could come from maximal angular velocity of shoulder horizontal adduction, shoulder abduction, forearm supination, upper torso rotation, forward trunk tilt and pelvis rotation (Matsuo, et. al. 2001). However, in this study the torso rotation, forward trunk tilt and pelvis rotation only contribute very little (6%) since the ratio of the modelled velocity and the ball velocity relative to the shoulder marker only increases 6 % compared with the total ball velocity at ball release. This was to be expected as the subjects had to throw from the spot without lifting their front foot, which is normal for handball players when they have to take a penalty throw. Thus, the other 27 % of could come from maximal angular velocity of shoulder horizontal adduction, shoulder abduction, forearm supination and wrist flexion. However, wrist flexion can only contribute to minor extend (given the leverage of the hand and maximal wrist flexion speed as found in this study). It should be noted that these data do not indicate that maximal ball speed can be obtained by merely using internal rotation and elbow extension. It is not unlikely that these joints obtain these high speeds by making use of slower movements in other joints in a chain of segments earlier in the throwing movement. |