The purpose of this study was to determine the effects of cyrotherapy on ankle/subtalar joint displacement and velocity of a healthy athlete performing a 45° sidestep cut maneuver. The results of this study indicate that a 10-minute icing treatment did not have an effect on either of these parameters. A post-hoc analysis of the data revealed that the majority of the subjects displayed one of two movement patterns. Six subjects utilized a predominantly sagittal plane movement pattern (Figure 3, Table 2) while eleven subjects displayed a frontal plane pattern (Figure 4, Table 3). The patterns of four subjects were unique to themselves. Because of limitations in statistical power, these patterns may only be discussed qualitatively. These two patterns were not dependent upon whether the subject contacted the ground with the heel or the forefoot as all subjects were rearfoot strikers. Subjects who exhibited a sagittal plane pattern demonstrated 26° of sagittal plane motion during foot contact, whereas their frontal plane range of motion was 17°. Conversely, subjects who demonstrated a frontal plane pattern displayed a 30° of subtalar eversion/inversion range of motion but only 15° of sagittal plane motion. Only ankle and subtalar joint motions were analyzed in this study. Because we did not place markers on the thigh or pelvis, we are unable to determine hip movement during the sidestep cut. Six of the subjects exhibited a sagittal plane pattern with little motion in the frontal plane. We believe that these subjects may have externally rotated at the hip in order to propel themselves 45° in a medial direction. However, we are unable to prove this because that data that would do so were not collected. Subtalar/ankle joint complex kinematics have been reported in several previous studies (Stacoff et al., 1996; Neptune et al., 1999; Simpson et al., 1999). The 17° frontal plane range of motion of subjects the sagittal plane group in our study is similar to that of the barefoot subjects of Stacoff et al. (1996). In that study, however, the maximum inversion angle was as much as 30° if shoes were worn (Stacoff et al., 1996). Unfortunately, because sagittal plane data were not reported in that study, comparisons of plantar flexion and dorsiflexion cannot be made with our study. The subjects of Neptune, Wright, and van den Bogert (1999) appeared to exhibit a sagittal plane movement pattern. In that study, the plantarflexion/dorsiflexion range of motion was approximately 35° , but minimal inversion/eversion displacement was detected. It is not stated in that article what type of footwear, if any, was worn by the subjects. Neither of these studies have indicated that more than one movement pattern existed amongst their subjects. In a study by Simpson and colleagues (1999), subjects contacted the ground in a neutral sagittal plane angle and in 15° of inversion. They reached a maximum 35° of dorsiflexion and inversion. A maximum of 5° of plantar flexion was achieved just after heel strike and at toe off, resulting in a 40° sagittal plane range of motion. The range of motion of the subjects in our sagittal plane group was 26° . Our subjects, regardless of whether they used a sagittal plane or frontal plane pattern, displayed much less range of motion than these subjects (Simpson et al., 1999). The peak inversion velocity of the subjects in our study is similar to that reported by Simpson et al. (Simpson et al., 1999). There may have been several reasons as to why the icing therapy had minimal or no effect on the ankle joint movement in our study. The ten-minute icing period of the current study may not have been enough time to cool the joint area, resulting in minimal muscle cooling and slowing of the nerve impulses. Therefore, ankle motion would not be affected. We feel that the ten-minute period of the icing treatment was an appropriate intervention because during halftime of athletic events, ten minutes is considered a standard treatment time. Although the use of ice bags may not have provided enough cooling to provoke neuromuscular decrements, we selected this technique because it is a commonly used method used to treat ankle injuries during halftime of sporting events. An ice bath or boot may have been more effective in cooling the ankle joint. A greater amount of tissue cooling may be related to increased ankle instability (Denys, 1991). Our research suggests that the standard ten-minute icing treatment method used during halftime is not related to ankle instability because no negative effects on ankle or subtalar joint movement patterns were noted. Our findings are consistent with those of other researchers who found that neither nerve conduction velocity nor joint position sense were affected by a fifteen minute ice therapy session (Halar et al., 1980; Hopper et al., 1997). We did not measure the cutaneous or subcutaneous temperature of the shank and foot. We are therefore unable to quantify the precise amount of tissue cooling and were unable to find the critical temperature where intramuscular cooling began. We are only able to state that the effects of the cryotherapy are similar to the effects that would occur during a halftime, but cannot correlate the amount of change of joint motion to the amount of tissue cooling. The subjects did not wear shoes during the testing because we did not want the various amounts of rearfoot control provided by different types of athletic footwear to influence the subject’s gait. Because of budgetary constraints, we were not able to provide a single type of footwear for use by all participants. In order to maintain consistency of footwear, we required each subject to perform the sidestep cut while barefoot. The subtalar/ankle joint kinematics may have been altered because of this barefoot condition. In the future, more extensive research should be done to investigate the effects of cryotherapy on lower extremity movement during sidestep cutting. Future studies should quantify the amount of tissue cooling, as well as any change in cutaneous sensation and joint proprioception. Further research should also be conducted to determine if longer cooling periods have a greater effect on ankle instability, muscle contractions and nerve conduction velocity. Because this study did not include EMG, future research should be conducted to explore muscle activity during a sidestep cutting maneuver during the pre and post stages of ice therapy. This will help researchers understand specific muscle twitch and contraction and relaxation phase changes. |