The study found significant correlation between RPE and HR, %MHR, VE and VO2 ml·kg-1·min-1 in CHF patients on beta-blocker therapy during a graded treadmill test. Additionally, the wide range of the RPE score at test termination may indicate large inter-individual variability between the patients during exercise. Therefore the RPE scale can be used as a method of determining training intensity for CHF patients on beta-blockers, however, it must be taken with caution. The results indicated a linear relationship between workload and the cardiorespiratory variables, high correlation between VE and VO2 ml·kg-1·min-1 and moderate correlation between HR, and VE and VO2 ml·kg-1·min-1. The moderate correlation between the RPE, and VE and VO2 ml·kg-1·min-1 also suggests that CHF patients on beta-blocker medication may have a similar respiratory responses to exercise to that reported by Wasserman et al (1987) for healthy people. The RPE scale therefore can be used as an indicator for respiratory responses during exercise for CHF patients on beta-blocker therapy. Despite the common use of the RPE as an assistant tool for determining exercise intensity in healthy populations, it may be different for cardiac patients who are on beta blocker medications. Beta-blocker therapy is followed by physiological changes such as a reduction of HR, cardiac output, and systolic and diastolic blood pressure (Australia- New Zealand Heart Failure Research Collaborative Group, 1995; Krum et al., 1995). Additionally, beta-blocker treatment is followed by emotional changes, an improved of quality of life and well being (Fowler, 1998). These changes may alter the relationship between the perceived exertion and physiological variables (Ekblom and Goldbarg, 1971). Low correlation was found between RPE and HR, suggesting that the use of RPE as an indicator for HR in patients on beta-blocker therapy may be problematic. It has been reported that use of a beta-blocker did not change the RPE scores at any given workload, although a reduction in HR was observed (Squires et al., 1982; Van Herwaarden et al., 1979). Sjoberg and Frankenhaeuser (1979) reported that the RPE score of healthy subjects did not alter after beta-blocker treatment, although the HR decreased by 16-19% at any given workload. They suggested that HR may not be a crucial factor in determining perceived exertion. As such, RPE may indicate the level of exercise intensity, but not necessarily represent the HR responses in CHF patients on beta-blocker. Therefore RPE should be accompanied by HR monitoring during exercise in these population. Nevertheless, due to the relatively small sample size caution must be taken when interpreting the study results. The study also may not be generalized to the entire CHF population, as some CHF patients are not treated with beta-blockers. Although the sample size in the current study was relatively small, we found a large inter-individual variability in RPE at submaximal and maximal exercise levels. This finding is similar to Whaley et al. (1997) who reported large inter-individual variability in RPE scores of both healthy and cardiac populations at intensities of 60% and 80% of maximal HR. The large inter-individual variability at submaximal and maximal effort and the fact that almost 30% of their subjects reported both lower and higher RPE scores compared to the recommended RPE guidelines set by Pollock and Wilmore (1990) , challenged the accuracy of the use of RPE scale as a determinant of exercise intensity of healthy and cardiac individuals when HR monitoring is not available (Whaley et al., 1997). It is important to note that overall perceived exertion is a subjective response to an effort and it encompasses two contributors. Firstly, local factors, such as sensations from the exerting muscles, and secondly, central factors, such as sensations from the cardiopulmonary system (Pandolf, 1986). In the current study, separate measures of muscular and cardiopulmonary RPE were not assessed. However, our finding that some patients exhibited clinical changes (such as ST elevation/depression or fall of systolic blood pressure) before a substantial increase in perceived exertion may indicate that these subjects were mainly focused on local effort, such as concentrating on walking on the treadmill and pain from the joints. In some patients it was possible that the body was also unable to translate the stress on the cardiopulmonary system to a parallel increase in RPE score since they were mostly aware of local sensations rather than central sensations (Hartzell et al., 1986). This finding is disturbing since it may suggest that patients can “push ”themselves post symptoms appearance (ST changes or fall in systolic blood pressure) which may expose them to an increased risk during exercise. |