Assessment of 1RM leg strength symmetry, measured in a weight bearing stance, can provide valuable assessment data to determine functional strength capacity. In our study, no significant differences in MUS strength were found between the dominant and non-dominant leg in the men (mean difference 0.9 kg) and women (mean difference 0.3 kg). Although Ross et al. (2004) revealed higher dominant isokinteic knee strength than non-dominant leg strength in young adult men and women, the results of this study are in agreement with the majority of previous research that reveals no difference with non-weight bearing strength tests (Hageman et al., 1988). These results are consistent with more recent studies that found no difference in isokinetic knee flexion and extension average and peak torque between the dominant and non-dominant leg in pre- adolescent and adolescent subjects (Holmes and Alderink, 1984; Mohtadi et al., 1990; Henderson et al., 1993). Similar results were found in isokinetic plantar flexion strength (Damholt and Termansen, 1978), isokinetic knee extension strength (Greenberger and Paterno, 1995; Lindstrom et al., 1995), and isometric hip and knee strength (Neumann et al., 1988) in young adults. These previous studies measured and compared dominant and non-dominant leg strength in a non-weight bearing position with single-joint isolation in an open kinetic chain test, which is not specific to the lower extremity demands during weight bearing activities. Similar studies have also been conducted on athletes using non-weight bearing strength tests. Masuda et al. (2003) assessed isokinetic hip and knee strength and revealed that no differences between the dominant and non-dominant leg in elite soccer players. Agre and Baxter (1987) and Ostenberg et al. (1998) also found no difference in isokinetic knee extensor strength between the dominant and non-dominant leg in men and women soccer players, respectively. In a recent study, Magalhaes et al. (2004) did not find a significant difference in isokinetic knee extensor strength between the dominant and non-dominant leg in elite volleyball and professional soccer players. In contrast to these findings, a previous study of intercollegiate soccer players revealed significantly higher (7 %) knee torque in the dominant leg (Kramer and Balsor, 1990). Kramer and Balsor (1990) measured average and peak torque with reciprocal concentric-eccentric contraction cycles while similar studies used peak concentric torque, which could account for the difference in the results between these studies of soccer players. The MUS in the present study requires eccentric and concentric strength, but the data in our study does not support that dominant and non-dominant leg strength differences exist with the inclusion of eccentric test demands in young men and women. Kramer and Balsor (1990) suggested that the difference in the volume of activity between the dominant (kicking) and non-dominant leg could produce side-to-side strength imbalance. For every kick and task to control the ball with the dominant leg, the non-dominant leg is active to produce hip and knee flexion and extension in a closed chain skill during a unilateral free-weight bearing stance. The non-dominant leg could be stronger in many soccer players if tested with the MUS due to the specificity between this weight bearing strength test and the high use of the non-dominant leg for weight bearing support that occurs during many soccer skills. The results of the present study indicate that squat strength, measured in a weight bearing stance, is similar between the dominant and non-dominant leg in young adult men and women who participate in general activities of daily living and are untrained in unilateral exercises. Muscular strength of the injured leg above 85 % of the uninjured leg is often used as the criterion in sports medicine to allow the athlete to return to full sport participation (Barber et al., 1990). Muscle imbalance between limbs is also thought to be related to an increase risk of injury (Agre and Baxter, 1987). In this study the men’s (2.6 %) and women’s (5.8 %) mean difference in side-to- side 1RM strength resulted from higher dominant and non-dominant scores. The side-to-side differences in strength varied from 0 to 15.4%. This range of scores justifies a need for more data on young men and women to better develop side-to-side weight bearing strength criterion, which determines the return to pre-injury activity levels of sport and activities of daily living. Young men and women who participate in high intensity sport, recreational and work activities require an accurate and comprehensive evaluation of lower limb function to reduce the risk of further injury after rehabilitation. The side-to-side differences in strength also indicate that pre-injury strength assessment is ideal practice when possible. Several closed chain machines used to test strength have been shown to produce reliable results (Negrete and Brophy, 2000; Kovaleski et al., 1997). These machines balance and control the resistance which may not be specific to the resistance conditions demanded in a free-weight bearing stance. In a free-weight bearing unilateral stance, hip abduction and adduction muscle activity is necessary to provide frontal plane stabilization (Schmitz et al., 2002). Muscle weakness in the hip musculature may not be adequately assessed using weight bearing machines that provide frontal plane stabilization. Although the MUS is not a complete free-weight exercise with the top of the uninvolved foot placed on a support bar, the majority of the barbell weight is supported on the lead leg. Due to a narrow base of support in the frontal plane and a weighted barbell placed on the back, we speculate that the MUS exercise provides less external support than weight bearing squats using machines and is a more functional lower body test for strength. The most common functional tests of unilateral capability that are utilized during rehabilitation are assessments for muscular endurance and power. Single leg hops for time and distance are tests of power while various tests that include high repetition toe touches in multiple directions during a unilateral stance are used to assess muscular endurance. These tests are considered functional measures due to the requirement of the activity in a weight bearing stance. Although Greenberger and Paterno (1995) found no difference in a hop test for distance between the dominant and non- dominant leg, Ernst et al., (2000) determined that subjects can demonstrate normal performance on these tests with existing strength deficits. The MUS strength data can be utilized in addition to these results of muscular endurance and power to provide a more comprehensive and accurate evaluation of functional status. Some subjects may decline to complete the hop tests or may not provide maximum effort due to fear of potential pain or injury from the propulsion or landing phase (Barber et al., 1990). The MUS test provides the clinician with an additional functional test as an option for assessment. For athletes that rely primarily on strength for optimum performance, the MUS would be a preferred test in place of the tests for muscular endurance. As noted, the current strength tests commonly utilized to determine symmetry are single-joint exercises performed in an open kinetic chain. Although these tests are reliable, research shows that low correlations exist between open kinetic chain strength and functional weight bearing performance (Pincivero et al., 1997). With increased emphasis on unilateral weight bearing exercises during rehabilitation, functional weight bearing assessment of maximum leg strength symmetry is warranted. |