Research article, Young investigator - (2005)04, 354 - 360 |
Resistance Training Improves Sleep Quality in Older Adults a Pilot Study |
Lee T. Ferris1, James S. Williams1,2,, Chwan Li Shen3, Kendra A. O'Keefe2, Kimberly B. Hale2 |
Key words: Chronic disease, resistance training, older participants, strength, sleep |
Key Points |
|
|
|
Participants |
Eight older residents (≥ age 60) from a local assisted living center completed 6 months of resistance training designed to improve upper and lower body strength. At the initial screening visit, consent was obtained and a medical history was documented. Inclusion criteria included (i) male or female 60 years of age and older, (ii) willingness to participate in a resistance training intervention for 24 weeks, (iii) ambulatory, and (iv) consent of their primary family doctor. Exclusion criteria included (i) any uncontrolled chronic illness, (ii) current exercise volume of more than 1 hour per week, and (iii) currently smoking. Participant description is as follows: 3M/5F; age 78.1 ± 3.1 yr, average body mass index 26.4 ± 1.8 kg·m-2 (means ± SE). Participant use of sleeping medication was not pronounced. Of the 8 participants, 6 never used any sleep aides. Of the two that did report the use of sleeping medication at the study onset, their use declined as the study progessed (data not shown). The Texas Tech University Health Sciences institutional review board approved the research protocol. |
Resistance Training Protocol |
Participants performed 1-circuit resistance training (RT) of bench press, leg press, leg extension, rowing, shoulder press and arm curl at 10-12 reps per exercise. Two minutes of rest was allowed between each exercise. Each training session lasted approximately 30 minutes. Training began at 50% of the one-repetition maximum (1-RM) and was increased as tolerated. Training was performed Monday, Wednesday, and Friday mornings for 24 weeks on site using a Precor® S3.21 Strength Multi-Station (Woodinville, WA, USA). The shoulder press and arm curl were performed using dumbbells. The training sessions were monitored by a certified fitness trainer. |
Measures |
At baseline, after 3 months, and after 6 months of RT, each subject performed a 1-RM test to determine upper (bench press) and lower (leg press) body strength. Briefly, the 1-RM was the greatest weight the subject could lift as determined by a stepwise increase in the load. The participants performed the exercise initially using submaximal weight. As the load and perceived difficulty moving the load progressively increased, the target number of repetitions per load decreased. The 1-RM was the weight of the last successful lift. To determine sleep quality, each participant completed the Pittsburgh Sleep Quality Index (Buysse et al, 1989) at baseline, after 3 months, and after 6 months of RT. The Pittsburgh Sleep Quality Index assesses 7 areas in arriving at a global score: sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance, use of sleeping medication, and daytime dysfunction. The 7 domains are each scored from 0 to 3, with a total or global score ranging from 0-21. A better sleeper would have a lower global PSQI score. The PSQI may have several longitudinal applications in clinical practice and research (Buysse et al, 1989), thus making it a logical sleep assessment tool for this study. Previous studies have used the PSQI to assess subjective sleep quality in the elderly with (Singh et al, |
Statistics |
Data were analyzed using SigmaStat for Windows Version 2.03. All values are presented as the means ± SE. A one-way repeated measures analysis of variance (ANOVA) was used to examine differences among the three reported 1-RM measurements and also for the sleep data. A Student-Newman-Keuls post hoc test was performed where indicated. Statistical signficance was accepted at p < 0.05. |
|
|
Strength measurements |
The average 6-month attendance rate for the protocol participants was 85.4 ± 3.9%. |
Sleep measurements |
Sleep quality, as measured by the PSQI global score, improved from the beginning of the training period to the three month time point (p = 0.043) ( |
|
|
Previous studies have shown that aerobic exercise training can exert positive effects on sleep quality. A 1997 meta-analysis (Youngstedt et al., Comparatively few studies have examined the relationship between resistance training and sleep as opposed to aerobic-based regimens, and fewer still have examined the effect of resistance training on sleep in older participants. Singh and colleagues demonstrated that a supervised weight-training program performed three times per week for ten weeks yielded improvements in measured subjective sleep quality for a group of depressed, mostly poor sleepers whose average age was 71.3 ± 1.2 years (Singh et al., This study utilized a multi-station machine (Precor® S3.21 Strength Multi-Station) and dumbbells purchased specifically for the protocol. All equipment was placed in a pre-existing physical fitness facility located at the assisted living center. The average 6-month attendance rate for the protocol participants was 85.4 ± 3.9%. We feel that this approach combines the best aspects of home-based training (no travel required, participants feel at ease) while simultaneously providing a social network and social support that enhances compliance and enjoyment of strength training (Seguin and Nelson, Lower body strength did not improve significantly from the resistance training. This protocol contained 4 exercises that worked upper body muscles; bench press, rowing, shoulder press and arm curl. Two exercises, leg press and leg extension, worked lower body muscles. Since our participants were sedentary, and ambulation, which utilizes the lower limbs, is the common movement in all non- handicapped individuals, we sought to emphasize upper body training. We viewed it as likely that upper body strength in these individuals had diminished more from disuse and therefore warranted an emphasis in resistance training. It is also possible, however, that this emphasis in training led to the disparities in strength gains seen in the lower and upper body regions. Future investigations would be advised to ensure a balanced approach regarding body regions exercised. It is possible that as gains in strength taper, a corresponding reduction of gain in sleep parameters also occurs. Although our subject pool was not of sufficient size to yield a significant correlation, the graphical trends are clear; from 3 to 6 months the average total strength declined while the average global PSQI increased (worsened) relative to the midpoint. This data is consistent with Singh and colleagues ( A topic receiving much attention is the of time-of-day training effect on sleep. Our participants trained only in the mornings. It would be informative if future research with older participants contrasted the effects of an identical training intervention regularly performed in the morning against one done in the evening. Multiple studies are needed to address this issue because it appears that exercise duration, as well as possibly intensity and other factors determine if a given protocol is best performed in the early or latter part of the day with respect to sleep quality. It is known that acute exercise can lead to a stimulation of growth hormone (GH) secretion (Weltman et al., There are limitations related to the present study. The participants in this study had an average baseline global PSQI of 5.0. The authors of the paper in which the PSQI was introduced describe a poor sleeper as one who has a global PSQI score of > 5. Hence, the participants for this study, at the onset, are considered to have been “good ”sleepers, albeit barely. It is tempting to conclude that a strength training intervention for the very old that do not sleep well would be more beneficial, given the results with same-age good sleepers. Future studies with elderly, poor sleepers are needed to confirm (or disprove) this hypothesis. Additionally, the small sample size limited the power of statistical analysis in this study and no control group was utilized. The number of willing participants at the assisted living center was limited and could be attributed to the fact that there was no remuneration. The constraints of the inclusion and exclusion criteria (see Methods) further restricted the size of the experimental group, and the aforementioned factors likewise precluded the creation of a control group. |
Conclusions |
One-circuit resistance training performed three times per week in the morning leads to an improvement in strength and sleep in older participants whose average age is circa 80 years. We suggest future studies are needed to explore the effects of different training times and strength gains/losses upon sleep, as well as to determine the efficacy of such regimens upon individuals who are characterized as poor sleepers. |
ACKNOWLEDGEMENTS |
We gratefully acknowledge Allen Stephens, D.O., for his medical assistance. We greatly appreciate the participants from Carillon who willingly gave of their time during the study period. This work was supported by a grant from the Helen Jones Foundation and The Carillon Research and Education Center. The results of this study were presented as a free communication at the 51st annual meeting of the American College of Sports Medicine (2004), Indianapolis, IN. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|