Research article - (2005)04, 382 - 394 |
Emotional States of Athletes Prior to Performance-Induced Injury |
Tracey J. Devonport1,, Andrew M. Lane1, Yuri L. Hanin2 |
Key words: Emotion, mood, success, injury, measurement, performance |
Key Points |
|
Conclusions |
In conclusion, the present study explored relationships between emotional states and a range of different performance outcomes using IZOF and POMS based methods. It is suggested that future research should further examine the emotional antecedents of injury and that applied sport psychologists recognize the potential risk of injury associated with emotional profiles typically linked with best performance. |
I) Izof StudyMethods |
Participants |
Volunteer Sport Studies students (N = 59, Age range 18 - 31 years; Male N = 35, Female N = 24) participated in this study. All participants competed at county level and above, with the majority competing in invasion and combat sports. Recall scaling includes several steps. First, optimal emotion patterns are identified. Athletes, using the stimulus list, select 4 or 5 positive and then 4 or 5 negative items that best describe their emotions related to individually successful performances in the past. Following this, dysfunctional emotion patterns are identified by selecting 4 or 5 positive and 4 or 5 negative items that describe their emotions related to individually unsuccessful performances. Finally, athletes use the stimulus list to generate individually relevant positive and negative emotion descriptors related to injured performance. Where it was deemed necessary, athletescould also add emotion words of their own choice. Each athlete generated idiosyncratic emotion descriptors for the four emotion categories: pleasant optimal (P+), unpleasant optimal (N+), pleasant dysfunctional (P-), and (unpleasant dysfunctional (N-). In summary, our study will examine emotional states using five dimensions proposed in the IZOF model. These included |
Procedure |
The institution in which the study was conducted granted ethical approval for this study. Participants signed informed consent forms prior to IZOF profiling. Data was then collected simultaneously from volunteer sport studies students at the start of a scheduled lecture. The first author described the IZOF process, with participants, and was present at all times to resolve any uncertainty regarding this process. |
|
|
In order to illustrate the identification of emotions experienced before best, worst and injured performance an individual’s qualitative (emotion content) and quantitative (emotion intensity) data are presented within A county level netball player indicated that confidence (intensity = 8) and determined (intensity = 7) were amongst the helpful positive affects experienced before the best performance, with the items intense (intensity = 3) and anxious (intensity = 2) being helpful unpleasant emotion. For the injured performance, the participant reported similar positive affects as best performance (confidence, intensity = 7; determined, intensity = 6). Injured negative affects included anxious (intensity = 6) uncertain (intensity = 7) and irritated (intensity = 6), these were seen to be unhelpful, hence different emotional states and functions to those reported to be associated with best performance. For the emotional profiles experienced before worst performance, the participant reported that unhurried (intensity = 5) and exhilarated (intensity = 6) were positive harmful with dissatisfied (intensity = 4) and concerned (intensity = 7) being amongst the harmful negative affects. Support for the quantitative was provided by the participant’s qualitative data. When describing their ‘best ever’ competition they described how the |
|
|
The IZOF approach was used to identify and assess participant generated emotion profiles (Hanin, At the group level, three emotional states were reported across all performance conditions and reflected qualitatively different interaction patterns. Specifically, nervous demonstrated an increase in intensity from best to worst performance, with injured being in the middle (Best < Injured < Worst). The intensity of the item ‘anxious’ had a similar intensity for best and injured performance, but was scored higher for worst performance (Best = Injured < Worst). Determined was associated with best performance, moderately associated with injured with low determination linked with worst performance (Best > Injured > Worst). Notably absent before worst performance were motivated (Best = Injured > Worst), confident (Best = Injured > Worst), energetic (Best > Injured > Worst) and aggressive (Best < Injured > Worst). A key aspect of Hanin’s work has been the identification of unpleasant states that facilitate performance and pleasant states that are harmful for performance. Findings of the present study indicate that anxious, aggressive and nervous were unpleasant states that were perceived to facilitate good performance. All seven emotional states associated with a best performance describe states of high activation (high intensity and effort). It is notable that the same emotional states in terms of emotional content, but slightly different in intensity, are associated with performances that led to injury. Of the seven emotional states identified prior to best and injured conditions, four were pleasant and three were unpleasant, a finding that lends support to the notion that researchers should assess an equal balance of positive and negative emotional states. The findings for worst performance show that the balance of pleasant and unpleasant affect was unequal. There were five unpleasant states and two pleasant states. Calmness might be associated with poor performance due to its link with complacency (Hanin, A number of emotional states were identified in the qualitative data provided by participants prior to best, worst and injured conditions. Prior to best and injured performances these predominantly included pleasant states such as enjoyment, happy, focused, determined, inspired and pumped. However negative states were also identified as being helpful and included aggressive, nervous, and anxious. Conversely when describing worst performance, only unpleasant states were identified within participants qualitative data. These included terms such as lost, fatigued, frustrated, pressured and nervous. The qualitative findings support the quantitative data and offer further support to the notion that researchers should assess an equal balance of positive and negative emotional states when profiling performance. When viewed collectively, findings of the present study illustrate that using an ideographic approach in the assessment of affect can produce data enriched by the self-generated descriptions of the circumstances surrounding best, worst and injured performance, an aspect of profiling not assessed in standardized scales. Additionally, it was possible to distinguish between perceived (or experienced) states, relatively stable emotion patterns and meta-experiences reflected in athlete’s attributions. |
II) Profile of Mood States Based StudyMethods |
Participants |
Participants (Age: M = 23.41 years, SD = 4.52) were 30 volunteer Sport Studies students. All participants completed at county level and above. As the sample two comprised a subsection of participants from sample one, the sporting characteristics of participants were matched in that all participants participated in invasion and combat sports. |
Profile of Mood States |
A short version of the POMS was used in the present study, namely the Brunel Mood Rating Scale (BRUMS: Terry et al., |
Procedure |
All participants were volunteers and no incentives were offered for their involvement in this study. Participants were given a questionnaire pack containing four different BRUMS Questionnaires. First, BRUMS assessed ambient mood, hence participants completed the BRUMS using the response timeframe ‘how do you feel right now?’ A second BRUMS asked participants to report how they felt before their best performance, with a third BRUMS asking participants to report how they felt before their worst performance. The fourth BRUMS asked participants to report how they felt before a performance in which they were injured (pre-event focus). The order in which participants completed the measures was randomized to prevent an order effect. |
Data analysis |
Data were analyzed using repeated measures multivariate analysis of covariance. Ambient mood was used as a covariate as previous research has suggested that mood influences memory processes (Bower, |
|
|
Repeated measures MANCOVA indicated a significant main effect for differences in mood by performance condition (Pillai’s Trace12,17 = .75, p < .01, Eta2 = .75). There was no significant covariate effect for the influence of current mood (Pillai’s Trace12,23 = .10, p > .05, Eta2 = .10) and no significant interaction effect (Pillai’s Trace12,17 = .40, p > .05, Eta2 = .40). Univariate results in Post-hoc analyses indicated that injured performance was associated with significantly lower fatigue (t = -3.67, p < .01) and confusion (t = -2.61, p < .014) than worst performance. Further, injured performance was associated with significantly higher scores on depression (t = -3.78, p < .01) and fatigue (t = 2.09, p < .05) and lower vigor (t = 3.41, p < .01) than best performance. Best performance was associated with higher vigor (t = 4.05, p < .001) and lower depression (t = -5.18, p < .01), fatigue (t = -5.34, p < .001), and confusion (t = -3.45, p < .01) scores than worst performance. As |
|
|
Findings from the present study showed significant differences between psychological state profiles taken retrospectively before injured, best and worst performance. An issue when considering psychological states before best, worst and injured performance is where an injured performance sits in relation to best and worst performance, which are used as individualized reference points. Injury (after its occurrence - but not necessarily prior to injury!) represents an unpleasant and unexpected experience and thus from a stress-induced perspective it could be argued that emotional states before injured performance should be closer to worst performance. Kolt and Kirby ( A limitation of standardized psychometric measures such as the BRUMS is that unpleasant emotional states were not functionally distinguished (N + and N-). However, it should be noted that findings show no significant relationships between tension and anger with injured, best, and worst performance. Previous research has argued that these states could serve a motivational function when experienced without depressive symptoms (Lane and Terry, Results of the POMS-based study also suggest that psychological states as assessed by the BRUMS that precede injury are more similar to high readiness states experienced prior to best performances than to worse-performance states. In other words, when things go too well for an athlete there is even a more danger in injury occurrence than prior to stress-related conditions when nearly all goes wrong and athlete is more alert and concerned about forthcoming performance. |
General Discussion |
Findings of the present study show that the assessment of retrospective emotional states using fixed item and idiographic approaches produced almost similar findings. The psychological state profiles of successful and injured performances demonstrated a closer relationship with each other than with worst performance. This was apparent with quantitative results taken from the BRUMS and IZOF methods and further supported by information gleaned using open-ended questions and narratives. Interestingly, qualitative data indicated that most participants were playing well prior to injury. We proposed alternative explanations for the results obtained and recommend that further research is necessary to test these alternative explanations. It is suggested that those performance states common to best and injured performance might be attributed to increased risk taking behavior, partly as a function of feeling in a state associated with superior performance. It is speculated that the perception of a superior performance when playing well, could lead to an increase in risk taking behavior as participants strive to maintain their performance level. Risk taking behaviors identified within the qualitative data included athletes committing to difficult challenges, reporting more physical involvement in competition and greater determination. A second explanation is an increase in effort expended (trying too hard) by athletes. Trying too hard is a common response of many athletes as a reaction to performance barriers. This can result from cultural and subcultural (specific sports) influences and norms (Hanin, The third explanation offered concerns overconfidence and complacency. Overconfidence, especially after repeated successes, can result in a shift of performance focus from the performance process (doing) to performance outcomes (even better results). Additionally, an athlete may begin to underestimate task demands and changing conditions. This results in an “easy” focus, with athletes being less alert in pre-event and mid-event situations. Thus optimal performance states may have a detrimental effects leading to injuries if an athlete underestimates task demands or does not make adjustments to specific conditions of competition. An acknowledged limitation of the present exploratory study was that the type of injury was not accounted for. When assessing injury, it is important to distinguish injuries that result from external factors (i.e., from opponents) and self-generated injuries (i.e., poor judgment leading to injury). However, it is suggested that applied sport psychologists acknowledge that those psychological states associated with best performance could also be associated with injured performance. This notion is in contrast to existing practice that focuses mainly on stress-related issues accompanying athletic performance (Kolt and Kirby, |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|