Research article - (2005)04, 534 - 542 |
Relationship Between the MTI Accelerometer (Actigraph) Counts and Running Speed During Continuous and Intermittent Exercise |
Comlavi B. Guinhouya1,2, Hervé Hubert1,, Grégory Dupont2, Alain Durocher1 |
Key words: Physical activity, joint kinematics, hip, ankle |
Key Points |
|
|
|
Subjects |
Eleven students in physical education (9 men and 2 women; aged 25.1 ± 3.7 years) volunteered to participate in this study. Their height and body mass values were 1.73 ± 0.10 m and 70.8 ± 10.8 kg, respectively. They were apparently healthy and moderately fit. Prior to the exercises, they were informed about the procedures and the possible risks of the experiment, and they gave a written informed consent in accordance with the ethical committee for the protection of persons in biomedical research at the University of Lille 2. |
Procedures |
The subjects were asked to randomly perform two maximal ramp tests (continuous and intermittent) on a tartan track. The exercises were separated by at least 2 days, and the protocol was completed within 2 weeks. Subjects performed these tests at least 3 hours post-absorptive and at the same time of day. During both exercises, the subjects had to walk/run for 3-min at predetermined constant speeds. The first speed was set at 1.1 m·s-1 and was increased by 0.56 m.s-1 every 3 min until volitional exhaustion. The running pace was dictated by audio signals. |
Continuous test |
This exercise consisted in running continuously for 3-min at successive speeds (’stages’). Red cones were set at 25-m intervals along the track. Within 2-m of each red cone, a green cone was placed, enabling the identification of the regularity of the paces according to the audio signals. At the highest speeds, if subjects were no longer able to maintain their speed with respect to the red cone, they were asked to stop running - when two consecutive late passages over the green cone were observed. The speed of the last stage enabled maximal speed (MS) to be calculated, according to Kuipers et al. ( |
Intermittent test |
This consisted in running for 10-s over a distance corresponding to a fixed speed (in the range 1.1 to 6.1 m·s-1), alternated by a 10-s passive recovery period. During the recovery periods, subjects were standing still, waiting for the start signal, which was given to nearest the second. At the highest speeds, subjects were allowed to stop running within 3-m after the stop line. After 10-s at rest, they turned around to run in the opposite direction. For example, when running at 3.9 m·s-1, a given subject ran 39.0 m in 10-s. By accounting for the reaction time and the time to stop running, the running phase lasted roughly 12-s. Each stage lasted 3-min, so that a given subject could perform 18 repetitions. The speed of the last entirely completed stage was recorded as the maximal intermittent speed. |
MTI accelerometer, ActiGraph, (model 7164) |
In both testing procedures, two ActiGraph units (units A and B) were tightly and systematically mounted on both the right-hand side of the hip and at the ankle in the same vertical axis, such that a line could be drawn to join them. The units were always placed in the same location for all participants - that is unit A was always positioned at the right hip, whereas unit B was always positioned at the right side of the ankle. The notch of unit A was steadily pointed upward, when that of unit B was toward the knee. Data was immediately downloaded after each test. The ActiGraph measures 5.1×3.8×1.5 cm, is lightweight (42 g) and powered by a readily available 2430 coin cell lithium battery. This uniaxial monitor integrates accelerations/ decelerations in the vertical plane via a piezoelectric plate. Acceleration detection ranges from 0.05 to 2.00 g in magnitude and the frequency responses ranges from 0.25 to 2.5 Hz, so that motion outside normal human movement is rejected by a filtered bandpass. The acceleration-deceleration signal is digitized by an analog-to-digital converter and numerically integrated over a user-defined epoch interval. The rate of change of acceleration is sampled 10 times per second and the data sorted into epochs and stored in the internal memory; then the integrator is reset to zero. To begin data collection, the monitor is initialized using a compatible personal computer. A real-time internal clock allows the researcher to begin collecting at the desired time. The output from the ActiGraph is in “counts ”per each epoch. “Counts ”represent the summed amount and magnitude of acceleration during each epoch. That is, higher numbers represent a combination of higher frequency and intensity of movement. Generally, users adopted a 1-min interval epoch to collect physical activity data over an extended period. However, for the purpose of this study, ActiGraphs were initialized to capture movement counts within 2-s time intervals. The reasons which motivated the choice of 2-s interval were, firstly for ease when cutting out outputs derived from the intermittent exercise; and secondly to get instantaneous peak counts instead of average counts over a longer period. |
Data reduction |
Mean ActiGraph outputs (counts per epoch) were calculated in the continuous test, for each speed, as an average of the 3-min exercise time. For the intermittent test, the ActiGraph outputs were averaged only over the 9 × 10-s of the running phase (9 × 10-s of recovery apart) during the 3-min exercise time for a given speed. Since the running phases at the highest speeds (from 3.3 m·s-1) lasted 12-s, only the first 10-s data were introduced into the calculation. |
Statistical analyses |
Data were expressed as means ± standard deviations (mean ± SD). A Kolmogorov-Smirnov test completed by the Lilliefors’ method enabled verification for normality. When the variables were not normally distributed, a log-transformation was applied to stabilize the variance, prior to the statistical tests. A series of two-way (exercise, placement and their interaction) analysis of variance (ANOVA) was used to examine the differences in the ActiGraph outputs at the different speeds across the exercise mode, by taking into account placement effects. Furthermore, a one-way ANOVA was used to determine whether the ActiGraph outputs changed across running speeds, in each exercise modality and each placement. If necessary a Tukey post hoc test was applied to locate the differences. Pearson product moment correlation coefficients were used to determine the relation between hip and ankle counts in each exercise modality. Because Brage et al. ( |
|
|
The ActiGraph outputs during exercises |
Continuous exercise |
When comparing hip and ankle counts during the continuous exercise, a significant difference at every speed was found. Ankle counts were higher than hip counts (0.001 ≤ p ≤ 0.01), except at 2.2 m·s-1 (p = 0.21); likely due to the transition between walking and running. |
Intermittent exercise |
Hip accelerometer counts augmented linearly with running speed up to 2.8-3.3 m·s-1. As shown by |
Continuous exercise versus intermittent exercise |
As shown in |
|
|
This study dealt with the functionality of the MTI accelerometer during a range of exercise intensities. It was designed to investigate the relationship between the ActiGraph counts and running speed; and to describe differences due to accelerometer position on the body and due to the exercise modality. The main finding of this study was that, regardless of the exercise mode, an ActiGraph worn at the ankle may be able to reflect movement from walking, jogging, and running at high speed, in contrast to most of the literature where an ActiGraph worn at the hip does not accurately represent movement when running. |
The ActiGraph output relations to speed |
Hip and ankle counts comparison across the exercise modalities |
This study demonstrated that in each exercise modality, the ActiGraph outputs obtained with an ankle placement were higher than those derived from a hip placement. Most of the reported studies devoted to the validation of this tool, had already highlighted some hip right and left hand-side placement, or right hip and lower back placement differences, in children (Faireweather et al., There are a few limitations to the current study. Firstly, an indirect calorimetry measurement has not been measured in parallel, so that an equation could be developed for ankle counts to estimate energy expenditure (as VO2). This approach may help to develop particular cut-off points for the time spent during activity categories when the ActiGraph is worn on the ankle. A second limitation consists in the lack of measurement of stride length and frequency, over the two exercise modalities. However, such a comparison may not add to the present study, since no exercise effect was found. |
Conclusions |
The ActiGraph can be adequately used to assess a wide range of speed depending upon the body placement. The dynamic range of this instrument seems to be quite far from usual human activity, even among highly trained athletes. As expected, a levelling off appears when wearing the device at the hip (above a jogging intensity) - due mostly to biomechanical factors - whereas ankle wearing provides information even at higher speeds. Further studies are needed to develop particular cut-off points for ankle, based on indirect calorimetry, and / or heart rate measurements. Finally, the use of the ActiGraph for team sports and physical training may be another research direction. |
ACKNOWLEDGEMENTS |
We are indebted to the subjects for their participation. We would like to thank Pr. Lemdani M. (Department of Biomathematics, Faculty of Biological and Pharmaceutical Sciences, University of Lille 2), and Dr. Campillo P. (Faculty of Sport Sciences and Physical Education, University of Lille 2) for their comments and advice. A special thanks to Pambou A. for his help in reviewing the manuscript. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|