In the present study, we hypothesised that compared with young subjects aging could influence perceived exertion and arm pain in 70 to 80 years women at the end of a maximal graded exercise test. The result of the present study showed that perceived exertion is not influenced by aging at the same relative exercise intensity (Aminoff et al., 1996; Bengtsson et al., 1977; Sydney and Shephard, 1977). The PE values found in the young and elderly groups (mean = 5.9 ± 1.4 and 5.0 ± 1.5 points, respectively) are in line with those usually reported in young subjects (4 to 10 points) at the end of a maximal graded test (Borg, 1998; Wilson and Jones, 1980). However, it is worth noting that one elderly subject rated 2 at the end of the GXT. A previous research (Tordi et al., 1998) has reported that exhaustion during a maximal upper limbs exercise is caused to a great extent by peripheral factors (i.e. blood lactate concentration, blood pH, mechanical strain) and then by cardiopulmonary factors (i.e. heart rate, oxygen uptake, respiration rate, minute ventilation). In the elderly group, the subject who rated 2 had a RER value of 0.87. Therefore it is possible that this subject understood the scale correctly but used a low rating value because her pulmonary responses at the end of the GXT were low. Overall these findings suggest that PE could be used to estimate maximal arm-cranking exercise in elderly women. However, the main finding is that perceived arm pain may be altered by the aging process for older participants in the context of the present study. The low PaP values found in the elderly group (10 women out of 12 scored 0 at the end of the GXT) could be partially explained by the fact that the elderly women may have a blunted pain perception during exercise. Coldwell and Smith, 1966 reported that the physiological basis of muscular pain sensation during exercise is caused by the localised muscular ischemia when muscle contractions are intense. We may hypothesise that the loss of the sensibility of pain and proprio-receptors caused by sarcopenia, decreases the speed and quality of nervous propagation (Lafratta and Canestrari, 1966). Recently, Reeves et al., 2006 have reported that in elderly subjects, molecular, cellular, nutritional and hormonal mechanisms are at the basis of sarcopenia and are responsible for a progressive deterioration in skeletal muscle size and function. For whole muscle, in addition to changes in neural drive, alterations in muscle architecture and in tendon mechanical properties, exemplified by a reduction in tendon stiffness, have been shown to contribute to this phenomenon. Another hypothesis reported by Boutcher, 2000 is that the elderly persons have degradation in cognitive performance, particularly for perception tasks. It is reported that impaired cerebral circulation caused mainly by aging is mostly associated with reduced cognitive performance (Chodzko-Zajko and Moore, 1994; Fabre et al., 2002). However, our results do not support this hypothesis because all elderly subjects had a MMSE score higher than 24, attesting that aging did not alter their cognitive functions. Another hypothesis is that Borg’s CR-10 and its instructions were not adapted for scaling arm pain in elderly persons. In the elderly group, some subjects rated low PE and particularly PaP values. For example, the subject who rated 2 on the PE scale rated also 0 on the PaP. Therefore, it is possible that in elderly persons more familiarisation before using the CR-10 is necessary in order to estimate accurately their perceptions. However, it is surprising to note that one young women pointed 3 on the PaP scale, although this subject meet 2 of the 3 criteria to obtain exhaustion (a drop in arm cranking cadence below 50 rpm, attainment of 83 % of age predicted maximal heart rate) she had a RER value of 0.93 and rated 4 on the PE. Therefore, it is probable that this subject stopped the GXT before exhaustion. For this reason her PaP was low. Further research investigating the relationship between perceived arm pain and exercise intensity in young and elderly subjects and using other pain-rating scales (e.g. Visual Analog Scale of Price et al., 1983) are encouraged to confirm the results of the present study. Concerning the physiological responses, the significant lower MTP, peak HR, peak VE, and peak VO2 values observed in the elderly group compared to the young group are in line with previous studies carried out on the effects of aging and physiological responses during exercise (Bengtsson et al., 1977; Shvarz and Reibold, 1990; Sydney and Shephard, 1977). However, when peak HR was expressed as a percentage of the theoretical maximal HR, no significant difference was observed between both groups. Therefore, the percentage of the theoretical maximal HR is more convenient than peak HR, VE, and VO2 to judge exercise intensity in elderly women at the end of a maximal graded arm test, and should be used routinely by health practitioners in reconditioning training programs. |