Contrary to our hypothesis, female athletes with exercise-associated menstrual disorders did not have significant alterations in serum inflammatory markers or blood lipids. We expected women with menstrual disorders to have significantly greater serum TNF-α , IL-6, TC, LDL-C, and TG than eumenorrheic women. Estrogen suppresses TNF-α and IL-6 gene expression (Salem, 2004) and elevations in TNF-α and IL-6 have been observed in postmenopausal women and in individuals with anorexia nervosa (Gianni et al., 2004; Kahl et al., 2004; O’Donnell and De Souza, 2004). We did not expect to observe group differences in serum estradiol because blood was collected from regularly menstruating subjects during the early follicular phase of the menstrual cycle. Assuming that women with menstrual disorders have lower cumulative estradiol exposure over the course of the menstrual cycle than eumenorrheic women, the lack of group differences in blood lipids was unexpected. Hormonal contraceptive users had elevated cortisol, CRP, TNF-α, TC, and LDL-C in serum compared to eumenorrheic athletes. Oral estrogens and progestins in hormonal contraceptives previously have been shown to increase TC, LDL-C, TG (Guazzelli et al., 2005), as well as, TNF-α and CRP in premenopausal women (Rickenlund et al., 2005b). There is evidence that the increase in CRP associated with HC use, results from hepatic metabolism of the steroid hormones rather than induction of an inflammatory response (Silvestri et al., 2003). Transdermal administration of hormonal contraceptives does not result in altered serum lipoproteins or CRP (Dreon et al., 2003). In the only other published observations of serum and endothelial inflammatory markers in women with exercise-associated menstrual disorders, Rickenlund et al., 2005a reported that oligomenorrheic and amenorrheic athletes had similar sVCAM-1, TNF-α , IL-6, and CRP compared with eumenorrheic athletes, despite impaired flow-mediated dilation. The results of the present study are consistent with these findings, strengthening the evidence that altered systemic cytokines may not be the link between estrogen inadequacy and impaired endothelial function. In the current study, sVCAM-1 was not correlated with TNF-α or IL-6, consistent with the findings of Rickenlund et al., 2005a in female athletes. Souter et al., 2005 reported a significant positive relationship between TNF-α and sVCAM-1 throughout the menstrual cycle in sedentary women. Although TNF-α and IL-6 induce expression of cellular adhesion molecules, circulating concentrations of these inflammatory markers do not necessarily reflect their bioactivity, which is modulated by soluble receptors, nor are they indicators of localized cytokine autocrine and paracrine activity (Fruhbeck et al., 2001). Exogenous estrogens also cause a divergent response of the cytokines and sVCAM-1 in vivo (Rickenlund et al., 2005b; Souter et al., 2005). Oral contraceptives decreased sVCAM-1, but increased TNF-α and CRP, in amenorrheic and eumenorrheic female athletes (Rickenlund et al., 2005b). In regularly menstruating, sedentary premenopausal women, hormonal contraceptive use decreased sVCAM-1, but had no effect on serum TNF-α (Souter et al., 2005). The effect of synthetic estrogens (e.g., ethinyl estradiol), commonly found in hormonal contraceptives, on serum sVCAM-1 in vivo is surprising based on regulation of VCAM-1 expression by estrogens in cultured endothelial cells (Mukherjee et al., 2003). In vitro experiments demonstrate that suppression of TNF-α-induced VCAM-1 expression by estrogen is mediated by binding of estrogen receptor β (ERβ) but not ERα (Mukherjee et al., 2003). Although 17-β estradiol binds ERα and ERβ, ethinyl estradiol only binds ER and has no effect on VCAM-1 expression in vitro. Our findings are consistent with these in vitro experiments. The positive correlation between estradiol and sVCAM-1 observed in this study was unexpected and may be an artifact of the study design. Although, hormonal contraceptives suppress sVCAM-1 (Rickenlund et al., 2005b; Souter et al., 2005) in premenopausal women, the amount of this adhesion molecule in circulation does not vary across the menstrual cycle (Souter et al., 2005). Because we measured reproductive hormones during the early follicular phase of the menstrual cycle when estradiol secretion is lowest, we were unable to determine group differences in cumulative estrogen exposure throughout the course of the menstrual cycle. Thus, our ability to examine the relationship between estradiol and sVCAM-1 was impaired. When the number of menstrual cycles per year was used as a proxy variable for cumulative estrogen exposure, the relationship between cycle number and sVCAM-1 was not significant. A limitation of this study is that the MD groups included women who were amenorrheic and oligomenorrheic. Rickenlund et al., 2005a reported that flow mediated dilation was more impaired in women with exericse-associated amenorrhea than in those with oligomenorrhea; however, TNF-α , IL-6 and sVCAM-1 did not differ between groups. Similarly, TNF-α , IL-6, CRP, and sVCAM-1 were not different between amenorrheic and oligomenorrheic subjects in the current study in post hoc analyses. The relatively small sample size is another limitation of this study, reducing the power to detect group differences. Retrospective power analyses demonstrate that a sample size of 32 subjects is required to detect a significant difference in IL-6 and TNF-α between the eumenorrheic and menstrual disturbance groups at power = 0.80 and p = 0.05. However, the required sample sizes to detect group differences in CRP and sVCAM-1 are 137 and 274, respectively, at power = 0.80 and p = 0.05. Thus, there may be differences in the inflammatory cytokines associated with menstrual disorders. However, it is unlikely that true differences in CRP and sVCAM-1 exist between the E and MD groups. |