The purpose of this study was to compare three different resistance training techniques (traditional, super slow and power) in the squat exercise. We found the super slow and traditional resistance training methods were perceived as being significantly harder than the maximal power method. There was no significant difference between the mean RPE measures taken following each set and the session RPE for each training method. There are several possible reasons to explain why super slow and traditional training were perceived to be more difficult compared to the maximal power method. Firstly a greater volume of work was performed during the super slow and traditional training compared to the maximal power method. A previous study by Kraemer et al. (1993) showed that increased training volume did not necessarily relate to increases in RPE and factors such as absolute load and rest periods between sets were more important factors. Another possibility is the issue of fatigue. Since the super slow and traditional methods took longer to complete one set it is possible that subjects were more fatigued than with the maximal power training. Both traditional and ballistic squats allow some contribution via SSC to the movement. That could contribute to why super slow training seems harder in addition to the other areas mentioned. It should also be noted that the exercises were performed on a Smith Machine which would remove the balance factors associated with free weight exercises. The loading for both the super slow and traditional training was far greater then the maximal power method. It has been previously demonstrated that when muscles are under heavy loads there is greater tension development which requires an increase in motor unit recruitment and firing frequency (Gearhart et al., 2001; Noble and Robertson, 1996). With greater motor unit recruitment, the motor cortex may send stronger signals to the sensory cortex, which may increase perceived effort (Gearhart et al., 2002). Since the super slow and traditional loads were heavier loads (55% and 80% of 1-RM, respectively) it is likely that this may partially explain the significant difference in perceived effort. The finding that subjects perceived the super slow session (55%1RM) to be as difficult as traditional session (80%1RM) is an interesting one. By decreasing the speed at which a person lifts weights, it has been proposed that less friction is placed on joints and the time under tension is longer in the muscle, therefore producing greater benefits compared to traditional resistance training (Hutchins, 1993). However there is only limited research on super slow training and very little evidence for the superiority of this method over traditional resistance exercise (Hunter et al., 2003; Keeler et al., 2001; Neils et al., 2005). A previous study by Keogh et al., 1999 used similar loading with the bench press exercise. Findings by Keogh et al., 1999 indicated non-traditional resistance training techniques appeared to work significantly better than heavy weight training on a number of the variables including power and force production. . In that study, the time under tension in the super slow exercise was clearly greater than the other methods involved (such as functional isometrics and heavy weight training). The loading used for the super slow session required the subjects to lift 55% of their 1RM for six repetitions, which is similar to what has been used in previous studies (Neils et al., 2005). The lifting speed was closely monitored by the researchers and a metronome was used to monitor the lifting speed. Once the loading was increased past 55%, difficulty in lifting was experienced which limited how much loading could be placed on the body. Although the time under tension appeared to be greater with the super slow protocol it is very likely that the neurological mechanisms are different to the heavier loads used with the traditional heavier protocol with regards to motor unit recruitment. For example data from Bush et al. (1999) demonstrated that there is increased lactate per set with loads of at least 80%1-RM and this may have been a factor given the high volume of sets used in the present study (6 sets). It is important to note that there appears to be an apparent disconnect between the perception of effort and the actual load being used in the super slow method. There needs to be a reduction in loading to make it possible to complete the required number of repetitions. Although this results in greater time under tension with lighter loads due to asynchronous motor unit recruitment, the subjects appeared to perceive this type of loading to be as difficult as the heavier traditional training. This may have also been exacerbated in the subjects in this study, who although they had 3 months of resistance exercise experience, did not report having used super slow methods previously. As there are no randomized controlled trials demonstrating strength and power benefits for super slow training, the efficacy of this type of training needs to be questioned. This highlights the need for practitioners to be aware of the limitations of relying solely of a subject’s perception of effort to assess the effectiveness of a training intervention. It is possible that the relatively short duty cycle in the power exercises, with at least a small unloaded time during the flight phase of the jumps led to improved blood flow, and contributed to the lower perceived exertion. We (Foster 1999), have previously demonstrated that several markers of fatigue, including muscle oxygen saturation and blood lactate accumulation, are greater during speed skating in the circumstances were higher muscle forces and a long duty cycle contribute to reductions in muscle blood flow. It is probable that with all three protocols the muscle forces were high enough to limit muscle blood flow. However, with the pattern of exercise in the super slow and power exercise, it seems reasonable to speculate that the relatively longer and shorter periods of increased muscle tension, respectively, may have contributed to the increased sensation of effort. In the present study, RPE values for each set were taken in addition to the session rating. The main purpose of taking the RPE values following each set, in addition to comparing average and session RPE, was to further familiarize the subjects with rating their perceived effort on the RPE scale. We believed this would increase the accuracy of the session RPE value. We did not find any significant difference between the session RPE and the average RPE values. The lack of significant difference between the RPE measures and the session RPE confirm findings from previous studies (Day et al., 2004; McGuigan et al., 2004; Sweet et al., 2004). Additionally, Foster et al., 2001, who examined session RPE as a tool for quantifying aerobic exercise, found high correlation between the average RPE and session RPE values using regression analysis. This provides further evidence that session RPE is a valid tool across a variety of modes of training. Lastly, Eston et al., 2006 have recently demonstrated that the growth of RPE during the course of fatiguing exercise appears to follow scalar properties, with a predictable RPE at various percentages of the relative maximal effort. This relationship is apparently stable even when the performance ability is experimentally manipulated by a preceding exercise bout. Thus, RPE in its various manifestations may provide a remarkably accurate, if simple, window into the metabolic disturbances associated with different types of exercise. |