The PL short latency response was unchanged by cryotherapy treatment. Further, no PL activation deficiencies were observed in the 100 msec following onset compared to the control group. These observations suggest that cooling the ankle joint (independent of the muscle) has no negative effects on the timing and magnitude of the PL short latency response to inversion perturbation during walking. During a jump landing, Miniello et al., 2005 reported that PL activation decreased in the 100 msec following the landing. However, it should be noted that the entire lower leg was cooled (up to the knee), including the PL. In the current study, cooling was limited to the lateral ankle joint only. Despite the temporary decrease in PL activation and given the fact that change was observed in time for stabilization following the jump landing, Miniello et al. , 2005 concluded that cooling the lower leg did not impair dynamic stability. Our data appear to be consistent with this conclusion. We speculate that the sensitivity or threshold of the muscle spindles within the PL were not cooled and therefore were unaffected by the cryotherapy treatment at the ankle. Therefore PL latency was not affected by the treatment in the current study. Average EMG amplitude of the PL short latency response decreased in both groups following cooling (post-treatment interval). We speculate that this is primarily due to neural adaptation to the perturbation. Over several trials subjects became more comfortable with the perturbation mechanism, and fewer motor units were activated in response. Another factor to consider is that pressure was applied to the ankle in both groups as a bag was compressed to the ankle during one treatment and a sham bag was compressed to the ankle in the other treatment. The afferent feedback from the compression could have played a role in the decrease observed in both treatment groups at the post- treatment interval. It is also possible that fatigue played a role in the decrease observed at the post-treatment interval. However, given the time between measurement intervals (pre, post, and 30) we believe that fatigue played a minor role if any. Further, we have previously observed strong reliability [ICC(2,1) = 0.918] over the 6 repetitions in a single measurement session. For future work using this type of inversion perturbation model, we recommend that each subject practice several trials to help alleviate the accommodation observed between the pre-treatment and post- treatment intervals. At 30 min post-treatment we observed an increase in PL activation relative to the control group. While this finding is difficult to explain, it is in part supported in the literature. Following knee joint cooling, voluntary quadriceps activation increased relative to a control during rewarming of the tissue (30 min post treatment) (Hopkins et al., 2004). Involuntary activation during the rewarming phase following joint cooling is also well documented (Hopkins et al., 2001; 2002, Krause et al., 2000). Following ankle joint cryotherapy, soleus activation remained facilitated above baseline levels at the 60 min post treatment interval (Hopkins and Stencil, 2002). Increases in activation during rewarming are likely due to alterations in afferent input from skin and joint receptors and/or altered supraspinal drive. Oksa et al., 2000 argued that muscle activation changes due to cooling and rewarming are likely centrally regulated due to muscle agonist/antagonist pattern changes following cooling. While more data are needed to determine the contribution of increased PL activation to movement and dynamic stability, these data are consistent with the idea that ankle joint cryotherapy may be used prior to activity without a reduction in PL activation. Further, joint cryotherapy may be an effective adjunct intervention to assist in active exercise where an increase muscle activation may be indicated. The model used in this experiment to examine dynamic muscle response to an inversion perturbation during walking is a novel approach to study dynamic stabilization characteristics of the ankle. Previous researchers (Benesch et al., 2000; Konradsen and Ravn, 1991; Konradsen and Ravn, 1990; Isakov et al., 1986) have not sufficiently tested response time of the peroneal musculature using an ankle inversion mechanism that examines dynamic restraint characteristics while the subject maintains a static postural stance. In order to more closely mimic the dynamic mechanism of an ankle sprain injury and the motor patterns active during gait, a runway with built in trapdoors was used in this study. This permits measurement and inspection of the timing and quality of the muscular response to perturbation while walking, taking into consideration sensorimotor factors only present during ambulation. Clinically, these data suggest that joint cooling is a safe intervention prior to activity in terms of short latency response of the peroneals. Joint cooling has also been shown to have no effect on lower chain kinetic variables (peak and average torque and power) during activity (Hopkins and Adolph, 2003) nor time to stabilization (Miniello et al., 2005). While the use of cryotherapy prior to physical activity has been questioned (Ferretti, 1992), when the muscle is not cooled, the motor activity around the joint appears to be unaffected in most cases. However, more data are needed to examine other aspects of dynamic stability, postural control, and muscular function before a clinical conclusion is made. A few limitations should be mentioned in regards to this study. Our use of healthy subjects was intended to provide an indication of how cryotherapy affects the dynamic response to ankle inversion perturbation. However, we recognize that subjects with acute or chronic ankle injury might respond differently to cryotherapy. It should also be noted however, that joint cooling was previously found to resolve deficits in motor recruitment due to joint effusion (Hopkins et al., 2002; 2004). Another limitation is our analysis of only the short latency response. Certainly we acknowledge that differences could exist in polysynaptic and centrally mediated responses. However, we chose to examine the short latency response as the first line of defense against an ankle injury mechanism. We also should note that the short latency response could change with varying gait speeds. We felt that the controlled, moderate gait speed used in this study would be indicative of functional movement. |