Research article - (2006)05, 390 - 399 |
Effects of Ballates, Step Aerobics, and Walking on Balance in Women Aged 50–75 Years |
Sarah Clary1, Cathleen Barnes1, Debra Bemben1, Allen Knehans2, Michael Bemben1, |
Key words: Exercise intervention, static balance, dynamic balance, aging |
Key Points |
|
|
|
Subjects |
Once Institutional Review Board approval was obtained for this study, sixty, sedentary, females, aged 50- 75 years, from the Oklahoma City Metropolitan area, were recruited via flyers, e-mail, and newspaper ads. If potential subjects were classified as healthy (no serious medical illness), sedentary (Baecke physical activity questionnaire), and obtained medical clearance from their own personal physicians, they were then randomly assigned to one of three supervised training groups, ballates, step aerobics, or walking. Only two of the subjects were premenopausal and 42 subjects were perimenopausal or postmenopausal, with 11 subjects on hormone replacement therapy. Over 50% of the women were taking a one-a-day vitamin or calcium supplements. There were also many subjects who were taking natural herbal supplements as well as other forms of medications for blood pressure, cholesterol, etc, however this was not taken into account for group randomization. |
Body composition |
Dual Energy X-Ray Absorptiometry (DXA - Lunar Prodigy) was used to assess body composition (fat and bone-free fat free mass - BF-FFM) as well as bone mineral density (total body, proximal femur, lumbar spine). A trained DXA technician performed and analyzed each scan using the encore 2002 software (GE Medical Systems, version 6.70.021). Subject height was measured using a wall stadiometer and weight was measured using a TANITA BWB-800 digital scale. |
Balance |
Four different measurements of static and dynamic balance were analyzed by the NeuroCom Balance Master. Since there are several different components which contribute to balance, the NeuroCom gives an objective assessment of the sensory and voluntary motor control of balance. This system is comprised of fixed 18" X 60" dual force plate which measures the vertical forces exerted by one's feet. These tests were broken into two different categories: 1) Impairment Tests (Modified Clinical Test for Sensory Integration of Balance - mCTSIB) which looked at the effective use of visual, vestibular, somatosensory, automatic and voluntary motor skills that aid in balance and mobility during a variety of changing task conditions; and 2) Functional Limitation Tests (Unilateral Stance - US; Tandem Walk - TW; and Step Quick and Turn - SQT) which looked at the ability of one to safely and efficiently perform mobility tasks in every day activities. In order to maintain consistency and for subject convenience, each of the balance tests were administered in the same order and by the same technician. Subjects were able to watch an instructional video of each required task on a computer screen before each individual test was administered. All tests began by placing the feet according to the foot placement instructions given on the computer screen. The analysis of each test was given in both a numeric version using percentages, ratios, etc, and a comprehensive version using graphs and pictures of movement patterns. |
Modified Clinical Test for Sensory Integration of Balance (mCTSIB) |
This test measures several components of functional balance by quantifying postural sway velocity while changing the subject's sensory condition. This is accomplished by changing the surface on which the subject stands, from a firm to a foam surface, and by asking the subject to stand on these surfaces with eyes opened and eyes closed. By asking the subject to perform this test with the changing conditions, both the sensory and visual components of balance were accurately assessed. The force plate detected sway patterns outside the subject's center of gravity during a 10 second trial period, therefore giving a measurement of sway velocity in degrees/second. The greater absence of postural sway after being told to hold still would indicate better postural stability and balance. The variables obtained from this test include Sway Velocity Firm Composite score, Sway Velocity Foam Composite score, Mean Center of Gravity (COF) Sway Velocity, and COF Alignment. Composite Sway Velocity is found by adding the two scores for eyes opened and closed and dividing by two for each condition (firm and foam) which creates two variables. The Sway Velocity for each variable is the ratio of the distance traveled by the center of gravity to the time of the trial. The average of the Sway Velocities for each condition gives a Mean COG Sway Velocity, with lower scores indicating greater balance. COG Alignment reflects the subject's center of gravity over their base of support. Three trials were obtained for each condition and an average used in latter analyses. |
Unilateral Stance (US) |
This test measures balance by quantifying postural sway velocity while the subject stands on either the right or left foot, with eyes opened and with eyes closed, for 10 seconds. The greater absence of postural sway after being told to hold still would indicate better postural stability and balance. Sway Velocity Eyes Open and Sway Velocity Eyes Closed are the two variables used in this analysis. The sway velocity for each variable is the ratio of the distance traveled by the center of gravity to the time of the trial. A mean of three trials was used in latter analyses. |
Tandem Walk (TW) |
This test quantifies characteristics of gait as the subject walks the length of a force platform, walking heel to toe. The measured parameters include step width, speed, and end sway velocity. A mean of three trials was used in later analyses. |
Step Quick and Turn (SQT) |
This test measures balance by quantifying turn performance after taking two steps forward and pivoting 180 degrees and taking two steps back to the original starting position. The measured parameters are turn-time and turn-sway velocity. A mean of three trials was used in later analyses. |
Interventions |
There were three different supervised interventions that the subjects were randomly assigned, Ballates, step aerobics, and walking. Each subject was required to exercise three days per week (Monday, Wednesday, and Friday) from 7:00am to 8:00am for 13 weeks. |
Statistical analyses |
Statistical analyses were performed using SPSS® for Windows® (version 12.0). Descriptive statistics (means ± standard errors) were performed for all variables to describe each group's body composition and balance measurements. Baseline comparisons between the three groups for physical characteristics (age, height, weight, body composition) and pre-training measures of balance were determined by a one-way ANOVA. A two-way repeated measures ANOVA [group (3) × trial (2)] was also performed on all measurements. A Bonferroni post hoc procedure was used if there was a significant group effect. When significant group by trial interaction effects were found, dependent t-tests within each training group were used to determine significant pre to post training differences. The level of significance was set at p ≤ 0.05. |
|
|
As mentioned earlier in the subject section, there were no baseline differences between the three groups for any physical characteristic (age, height, weight, body composition). Additionally, there were no group differences for any pre-training balance measure with the exception of one value. Only end sway velocity for the Tandem Walk was statistically significant (p = 0.017) between the three groups with the Ballates group starting out significantly worse (5.9 deg·sec-1) than the other two groups (Step Aerobics = 4.2 deg·sec-1 and Walking = 3.9 deg·sec-1). There were significant trial effects for percent fat variables, with small but significant decreases occurring in total body (p = 0.018), legs (p = 0.001) and trunk (p = 0.029) percent fat ( There were four pre and post-test measurements of balance, mCTSIB, Unilateral Stance, Tandem Walk and Step Quick and Turn, which looked at both sensory and functional balance. A mean was taken of each of the three trials performed for each test. |
Modified Clinical Test for Sensory Integration of Balance (mCTSIB) |
"The mCTSIB analyzes one's sensory ability to compensate when one of the contributing factors, from the nervous, visual, vestibular, and somatosensory systems, are taken away. This test was simulated on a firm surface and then on a foam surface with eyes opened and eyes closed. There was a significant group by trial interaction for sway velocity on a firm surface with eyes closed (p < 0.05; Sway velocity on a firm surface with eyes closed remained unchanged for the walking group after the intervention (0. 291 deg·sec-1) while the step aerobics group improved their balance as demonstrated by a decreased sway velocity (0.391 to 0.255 deg·sec-1), whereas the Ballates group had greater sway velocity after the intervention when compared to pre-training values (0.275 to 0.319 deg·sec-1) indicating a decrease in static balance performance. On the other hand, sway velocity decreased (improved balance) for both the walking and step aerobics groups (1.49 to 1.23 deg·sec-1 and 1.46 to 1.29 deg·sec-1, respectively) on a foam surface with eyes closed, while the Ballates group once again increased sway velocity (decreased balance) following the training (1.39 to 1.64 deg·sec-1). |
Unilateral Stance |
Unilateral stance not only measures one's ability to compensate when senses are taken away, but also one's functional ability to stand on one leg. Sway velocity and length of time on the right foot, with eyes closed both approached statistical significance for the group effect (p < 0.062 and p < 0.074, respectively) but there were no statistically significant group, trial, or group by trial interactions for any of the static balance variables measured during the unilateral stance test. |
Tandem Walk |
There was a significant trial effect (p < 0.01) but no group or group by trial interaction for the distance covered in centimeters during the 10 second tandem walk ( |
Step Quick Turn |
After analyzing turn time on the right foot, a significant trial effect (p < 0.01) but no group or group by trial interaction was determined indicating that all groups improved in turn time following their respective training intervention (Ballates, 26%; step aerobics, 18.9%; and walking, 6.3%; |
|
|
The fact that the modified clinical tests for sensory integration of balance (mCTSIB) reflected improved measures of static balance for the walking and step aerobics groups but not for the Ballates group may be due to the fact that the walking and step aerobics interventions focused on leg strength and endurance whereas the Ballates intervention, which utilized stability ball exercises, focused on strengthening the abdominal core. These results are similar to findings of Urbscheit and Wiegand, We did not find any improvements in the variables associated with unilateral stance following all three exercise interventions. Cosio-Lima et al., Even though all three exercise groups significantly improved the distance covered during the tandem walk test following the training, the walking group and the step aerobics groups had larger improvements when compared to the Ballates group. This finding might be expected considering the nature of the training that each group completed, for example the walking group was encouraged to walk during training at a faster pace than normal as well as for the stepping group to increase the intensity or speed of cadence in which they were stepping. On the other hand, even though all three groups improved their turn sway during the step quick and turn test, the Ballates group now had the largest improvements again emphasizing the specificity of the training programs (Cosio-Lima et al., One possible limitation of this study was that the younger age of the subjects, which ranged from 50 to 75 years (11 subjects were older than 63 years and only 2 subjects were greater than 70 years of age), with a mean age of 58, when compared to many of the other studies which recruited men and women aged 65 years and above. This could explain why there were no group differences or group by trial interactions following the training since these subjects already had good postural stability and balance even prior to training. Another limitation of the current findings when trying to compare the results to previous studies is the fact that most other studies measured balance using the Berg Balance Scale as well as functional field tests. There are almost 400 potential fall risk factors that have been identified, but the most important of these are the intrinsic factors. This study and other studies have demonstrated that exercise can have a positive effect on the risk factors associated with balance. It seems as though no particular type of exercise is superior to the other forms of balance training, with the exception of prescribing a combination of these exercises, i.e. stability ball plus weight training. Additional research needs to investigate the effectiveness of stability ball training in combination with dance based or step aerobics, or in combination with walking exercises. If similar improvements in balance can be realized when combining home based exercise using the stability ball with walking compared to the traditional resistance based weight training programs, then more elderly individuals may be able to enhance their balance and reduce their risk of falling without having to train at a gym. Before 2001, no studies were found that looked at the efficiency of stability ball training. In |
Conclusions |
In conclusion, the Ballates training program was effective for improving dynamic balance (TW and SQT) but not for measures associated with static balance (mCTSIB tests involving the measure of sway velocity on firm and foam surfaces). In contrast, the step aerobics and walking programs improved measures of both static and dynamic balance. Therefore, our findings suggest that increasing physical activity levels, in general, may improve measures of both static and dynamic balance. |
Pre and Post Test Measurements |
Functional Limitation Tests |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|