Research article - (2006)05, 488 - 494 |
Impress Your Friends and Predict the Final Score: An Analysis of the Psychic Ability of Four Target Resetting Methods Used in One-Day International Cricket |
Barbara J. O’Riley, Mathew Ovens |
Key words: Cricket, predicting scores, psychic abilities |
Key Points |
|
The “Fairness Metric” |
Gurram and Narayanan’s ( Secondly, Gurram and Narayanan, |
|
|
The four methods chosen were Average Run Rate, PARAB, Duckworth/Lewis and Jayadevan. Average Run Rate (ARR) and PARAB (P) methods were chosen as they are easily adapted to predict a score achieved by the conclusion of an innings, using only the present runs scored and balls bowled. Duckworth/Lewis (D/L) was chosen as it is the current rain-rule used in One-Day international cricket. Jayadevan’s method (J) was chosen as a potential alternative rain-rule that could be used to replace D/L (as discussed in Ovens, In order to use D/L as a predictive tool, we adapted the target formula ( In the case of a stoppage occurring during Team 1’s innings, Jayadevan’s method is applied as follows: To convert Jayadevan’s method into a predictive tool, we note that step 3 gives us 0% overs remaining, which in turn means that steps 4, 5 and 6 are unnecessary and the effective normal score is the normal score obtained in step 2. Thus, the result obtained in step 9 would be the target for Team 2, consequently the predicted score for Team 1 is one run less. It is worth noting that if Team 1’s score is zero then this method results in a predicted score of zero. Further scrutiny of Jayadevan’s method also indicates that, when using this as a predictive tool, the multiplication factor from step 8 will always be less than 1. Software was written so that predictions using each method could be easily calculated from the present state of the match. Using the data provided by Champion Data we computed the predictions for each method on each ball of the first innings of the 173 matches. We then defined OverProjijk as the difference between the prediction (on ball i, in match j, using method k) and the actual runs scored on ball i, match j. This OverProjijk is then used to compute four different alternative Psychic Metrics; by ball, by delta, by delta/ball and by arbitrary. We define the four Psychic Metrics as follows: By observing Using the four psychic metrics, we were able to come up with scores scaled for each method. |
|
|
We present examples using two of the psychic metrics to demonstrate the results obtained from the work undertaken in this paper. Psychic scale was presented in This score was then multiplied by the balls remaining in the innings. Summing over the entire innings gives the following representation for Match j, Method k. From this representation, it is clear that the maximum possible raw score for any 50 over match would be 451,500 and thus: As can be seen from As can be seen in the above graph, the Jayadevan, PARAB and Average Run Rate methods do poorly when compared to the Duckworth/Lewis method. One expects that as we get closer to the end of the game, the predictions will improve for all methods and this is evidenced in the above graph. The following table shows a comparison between the four methods with 10 overs remaining. The software used to obtain these results was adapted to allow us to check for any games that may have heavily influenced the results. This was done by visual inspection, using graphs plotted by the software. |
|
|
We expected to find that both the Average Run Rate and PARAB methods would not perform well when compared to other methods, as it has been demonstrated time and time again that they have potentially serious shortcomings as target resetting methods. These shortcomings imply that the methods will not perform well over extended periods, however they were included to aid in comparison. Furthermore, we also expected that Jayadevan’s method would not perform well, as it is a method that is not designed to predict scores but rather to reset the target, yet, as mentioned earlier, a target resetting method should have a reasonably accurate estimate of Team 1’s expected final score. The intention of this work was to create a metric that could be used to assess the accuracy of a target resetting method in computing Team 1’s expected final score. This leads us to conclude that Jayadevan’s method would work best only when Team 1 has completed its innings. As the Duckworth/Lewis method is readily adaptable as both a predictive and a target resetting tool, it met our expectations to surpass the other methods. Assessing the four methods with our various psychic metrics, we conclude that the Duckworth/Lewis method is the most reliable in computing the expected final score of Team 1 and therefore should be chosen above other potential target resetting methods. In attempting to create a metric to assess a target resetting method, we have inadvertently introduced potential weaknesses. Firstly, the data set we used, kindly supplied by Champion Data, consisted of only 173 matches, most of which came from series in which Australia was involved. Consequently, it was not a truly random sample. A more accurately representative data set, consisting of matches from various series and between various teams would allow us to address this problem. Secondly, in order to measure the methods against our psychic metric “ruler”, we needed to adapt each of the methods to produce a 50 over score. For ARR, PARAB and D/L this is readily achieved, but for J this produces problems, as one of the assumptions underlying the method is that Team 2 cannot possibly face more overs than Team 1. Whilst this is true, it is a technical deficiency of the J method that restricts it from providing a prediction of Team 1’s final score. Thirdly, in this work, we have only addressed terminal stoppages, which may have biased the results. In the future, we plan to look at multiple stoppages, to see whether they affect a team’s predicted final score. Another area that could be looked at would be to give such metrics the ability to be classified by both country and ICC ranking. This would allow one to deal with inefficiencies stemming from the issue of low scoring teams playing high scoring teams and the problems this causes when target resetting methods are applied. An additional aspect to consider for possible future research would be to investigate if suggested new rules affect how a team plays its innings and if this in turn affects the final score prediction. As an extension of this, one could look at if and how the batting order affects a final score prediction (like Bukiet et al., |
Conclusions |
Overall, in our opinion, D/L is presently the best available target resetting method and is the most accurate at predicting Team 1’s final score. We also believe that a single number cannot accurately summarise a target resetting method, rather a suite of measures are required. We see the opportunity for potential future research in order to investigate multiple stoppages to see how they affect the ability to predict a team’s final score. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|