The idea of describing movements of two players with their relative phase was first introduced by McGarry et al., 1999 in squash. They were influenced by an interpretation of the players’ moves as the moves of a dancing couple. Certainly, another source of this idea was the successful application of relative phase in order to describe coordinative patterns in movement science (Haken et al., 1985; Kelso, 1995). McGarry et al., 1999 examined the absolute distance of the players from mid-court and found dominantly an anti-phase behaviour. Palut and Zanone, 2005 calculated relative phase for the first time with Hilbert transform. They used the lateral distance from mid-court in tennis and also found that most of the time, tennis players showed an anti-phase behaviour, but also in-phase values of relative phase showed a relative maximum. Our own investigations were in tennis. We focused on methodological issues and addressed the question of the meaning of different values of relative phase for the status of the game. Why is relative phase a promising approach to describe the spatial interactions in a net/wall game? From a systems point of view, the movements in tennis can be perceived as the movements of two subsystems, the players. These subsystems are strongly coupled by the nature of the game because they exchange strokes. While one player hits, the other tries to get in a “neutral ”position, from where he has the best opportunities to arrive in time at the next stroke. As soon as he recognizes the direction of the stroke, he moves to the place of contact, while the other player moves to his “neutral ”position. Figure 1 displays an idealised long-line and cross rally with the corresponding positions. A very interesting hypothesis from a practical point of view is the relation between the relative phase and the state of the rally. One might assume that a stable relative phase indicates a stable game when no player has problems to arrive just in time for his stroke. The very nature of tennis demands, though, to use placement and speed of the strokes to create pressure and win the point at last. This should result in a perturbation of relative phase. So, the hypothesis is that in a stable phase of the rally the relative phase is stable, but in the final phase, when a winner is scored or the opponent is forced to commit an error, the relative phase becomes unstable. If this hypothesis could be proven it would allow to determine the pressure created during a rally which would in turn be a valuable instrument for practical analyses. We examined 30 rallies of top class athletes which we recorded from broadcasts of Grand Slam tournaments (Paris and Melbourne). The rallies were selected if they had a considerable length and if they were conducted and finished at the baseline. 18 rallies were played by female athletes. The positions of the players were obtained by image detection methods provided by the faculty of computer science, technical university Munich. Relative phase was calculated from the smoothed (1Hz filtering) time-series of positional data from the two players. The algorithm of Hilbert transform (MatLab) was used for the calculations. This procedure is well known in signal theory and allows to calculate continuous relative phase which is mandatory for we have comparatively few strokes in a rally (Pikovsky et al., 2001). The first methodological issue we addressed was the optimal database for calculating relative phase. We found that the lateral displacements (see Figure 2) provide a good representation of the behaviour in the court, but have some weaknesses in their phase structure. This is due to the fact that even in baseline rallies the players move also perpendicular to the baseline in a considerable amount. As a result relative phase sometimes shows features that are hard to interpret when taking lateral displacements. The end of the rally is “announced ”by a change in relative phase from in-phase to anti-phase. As an alternative we took the players’ trajectory in the court from measurement to measurement (25 Hz). Actually these are speed data and relative phase now informs about the phase relation of moving speed of the players independent from their position on the court. With this data we usually get clear results for relative phase but we lack much of the understanding what is going on in the court (see Figure 3). As a result, we suggest analysing lateral displacement as well as the two-dimensional trajectories in the court. The cyclical structure of the time series is evident, the rally ended with an unforced error o Clijsters which was not “announced ”in relative phase which fluctuates around in-phase throughout the rally. Results concerning the distribution of relative phase show that taking speed data we obtain a one-peak distribution indicating the dominance of in-phase. This is due to the fact that the rally synchronises the players in the sense that they alternate between two states: low speed while one player hits and the other orients for his next stroke, high speed while one player approaches the ball for his next stroke and the other comes back from his stroke towards a neutral position. This is in good agreement with the findings of Palut and Zanone, 2005. The dominant future task will be to link relative phase to tactical behaviour in the court. One way to achieve this will be a close examination of a larger sample of top-class rallies, but we will also instruct national-level tennis players to exhibit behaviour according to our instructions and study the provoked behaviour of relative phase. |