The main purpose of this study was to determine the efficacy of the 22-week prescribed balance training programme on the incidence of lateral ankle sprains. Because it was our objective to perform a pilot trial a small sample size was used. Although we used a small sample size, the RR (95% CI) clearly showed a significantly lower incidence of ankle sprains in the IG compared to the CG for the total sample and in men after balance training. The same result could not be found by the calculated incidence rates (95% CI) because we were unable to accurately measure the incidence rate for both groups due to the low number of subjects. This low number of subjects causes a large spread between the lower and upper 95% CI. A post-hoc power analysis (β= 0.90; α= 0.05) revealed that a sample of 113 subjects was necessary to prove a significant difference between the IG and CG when using incidence rates (95% CI). The intervention programme was designed based on information of injury mechanisms and effective prevention strategies as learned from previous studies. It was developed with an emphasis on elements that could be implemented by coaches. A prevention protocol requiring active participation from physicians or physical therapists or expensive equipment would limit its potential for future use. For that reason, the prescribed balance training programme was developed by both a top level coach, for the sports specific issues, and a sports physical therapist to ensure that the exercises were well thought through and built up gradually. To establish the motivation of the coaches sports specific issues were integrated, which led to 4 basketball specific items being incorporated in each session (stance exercise, Aberdeen, dribbling and passing drill). The choice for balance semi-globes has grown from previous research which revealed that a vast majority of ankle sprains are caused by players landing on another player’s foot (Cumps et al., 2007; Self and Paine, 2001; Thacker et al., 1999). The semi-globe shape approaches the shape of a player’s foot more than wobble boards do and is less expensive (€ 10.00 per player or per 2 semi-globes). Verhagen et al., 2005 showed that balance training with balance boards is a cost-effective preventive intervention. We did not investigate the cost-effectiveness, but it can be assumed that since balance semi-globes are less expensive than balance boards, a large-scale implementation of balance training with balance semi-globes will result in an even higher cost-efficiency. Because of the low number of subjects and because we wanted to avoid contamination, we felt that it would not be possible to randomise the individuals to either the CG or IG. To avoid contamination it is necessary to divide teams in either a CG or IG. We also chose not to use the cluster-sampling randomisation method, because it also would have led to selection bias. Analysis by a cluster sampling method gives the opportunity to analyse the data, while taking a team specific risk into account. Unfortunately, the number of teams (n = 6) is too low for proper analysis by means of cluster sampling. Randomisation would have been detrimental to the supervision, which was much more feasible in the teams appointed to the IG. In our study, both groups were similar where age, weight, BMI and level of play (at the end of the season, ranked in a successive order in the same division) were concerned, which we hope limited the selection bias. There was a significant difference in the height of the CG en IG group members, yet this has previously not been identified as a risk factor for ankle sprains (Beynnon et al., 2003; McKay et al., 2001; Wedderkopp et al., 2003). Furthermore, we chose control above randomisation in order to determine the efficacy (maximal achievable effect). When only taking into account recurrent ankle sprains, we did not find any effect of the intervention. The incidence rate in the CG was higher than in the IG for both the new and the re-injuries, although not significant. The lack of a significant difference is most likely down to the small size of the subgroups - consisting of subjects with or without previous ankle sprains - which has probably led to a type β error. Most studies show that the effects of balance training are mainly seen in players with previous injuries (Bahr et al., 1997; McGuine and Keene, 2006; Stasinopoulos, 2004; Tropp et al., 1985; Verhagen et al., 2004). We can draw no conclusions towards the long-term effects of balance training. Follow-up during more than one season in this small number of teams might result in a high amount of drop-out, since players and coaches are free to switch teams between 2 seasons. Most authors have investigated the effect of balance training during one season without any follow-up in the next season (McGuine and Keene, 2006; Petersen et al., 2005; Söderman et al., 2000; Stasinopoulos, 2004; Tropp et al., 1985; Verhagen et al., 2004; Wedderkopp et al., 1999; 2003). Only Bahr et al., 1997 performed a 3-season phase intervention. During the first season, injury registration was performed, during the second season the intervention programme was introduced by means of a theoretical and practical session. The third season, the prevention programme was outlined in a booklet, which was distributed to all players before the season in order to reinforce the information given during the previous season. When comparing the first to the third and the second to the third season, the incidence of ankle injuries was significantly lower. Seeing these results we can conclude that introducing the intervention programme will reduce the number of ankle injuries. Whether players are at higher risk when withdrawing from balance training remains to be seen. Most of the investigators combined balance training with either functional training, technical training or jump training, which makes it impossible to determine which training is responsible for the preventive effect (Bahr et al., 1997; Petersen et al., 2005; Wedderkopp et al., 1999). The intervention in our study had to be performed 3 times a week for 22 weeks of the season, for 5 to 10 minutes per session. The frequency and duration of balance training differ among studies, but in the majority of investigations the programme is performed during the season for 5, 10 or 15 minutes per session, although the number of sessions tends to vary between the studies (Bahr et al., 1997; McGuine and Keene, 2006; Petersen et al., 2005; Söderman et al., 2000; Stasinopoulos, 2004; Tropp et al., 1985; Verhagen et al., 2004; Wedderkopp et al., 1999; 2003). As mentioned before, we choose control over randomisation to determine the efficacy rather than effectiveness, which is only feasible in rather small samples or with a high amount of personnel. To succeed in controlling exposure measurement, injury registration and execution of the intervention programme, we appointed ODs. This resulted in a low drop-out percentage (7.4%) which was caused by external factors alienated from the study itself. Thanks to the ODs, we have detailed information on how the coaches and players complied with the intervention. In the present prospective study, injuries were measured by means of self-report. The ODs were either physical therapists or physical education teachers and checked whether all injuries were registered, which is why there were hardly misclassifications of injuries at all. Injury awareness is believed to be a confounding factor in sports injury research because it causes players to adjust their behaviour in practicing sports (Verhagen et al., 2004). Same as with the study of Verhagen et al., 2004 the effect of injury awareness was minimized by giving both groups exactly the same information on the background and procedures of the study at baseline. The only difference in information was the instruction on the balance training programme, which was kept from the CG (Verhagen et al., 2004). |