The mechanical stiffness of a joint is defined as the absolute torque that is required to maintain the joint specific angle or the ratio of the change in the joint torque to the change in joint angle (Kearney and Hunter, 1990). Joint stiffness depends on the following three properties that have different origins: (i) the elastic properties of non-contractile connective tissues (including joint capsule and skin), (ii) the elastic properties of the muscle-tendon complex, and (iii) the reflex activation of a muscle following a change in its length. In particular, the static passive stiffness of joints largely depends on the elastic properties of non-contractile and contractile tissues (Gajdosik et al., 1999). It has been reported that acute eccentric contractions (ECs) induce muscle weakness, soreness, and the sensation of stiffness (Chleboun et al., 1998; Clarkson et al., 1992; Nosaka and Clarkson, 1995; Porter et al., 2002). Compared to other symptoms, the sensation of stiffness has not been well analyzed. The sensation of stiffness has been described as a reluctance to stretch the affected muscle and has been most commonly evaluated by measuring the post-exercise resting position of the joint (regarded as range of motion (ROM)) (Clarkson et al., 1992; Nosaka and Clarkson, 1995; Stauber et al., 1990). The elbow angle of a relaxed arm becomes more acute following EC exercises of the elbow flexors. Immediately after exercise, this angle begins to decrease and continues to decrease until day 3 in the previous human studies (Clarkson et al., 1992; Whitehead et al., 2003). The resting angle then increases gradually. In addition, Howell et al., 1993 and Chleboun et al., 1998 measured the joint stiffness (regarded as passive resistive torque (PRT)) in an intact human elbow. They showed that the PRT increased immediately after ECs and remained elevated for approximately 4 days. Regardless of the evaluation method used, joint stiffness is observed to increase after EC exercises. Various theories have been proposed to explain this increase in joint stiffness. Clarkson et al., 1992 proposed that an influx or accumulation of calcium could activate specific enzymes and cause excessive contractures in the damaged fibers. Howell et al., 1993 stated that the restriction of motion and the apparent decrease in the resting length of the muscles was due to the occurrence of an edematous change in the perimuscular connective tissues. Stauber et al., 1990 concurred and proposed that the swollen tissues that pushed against the fascia could shorten the muscle passively. The focus of these hypotheses is to determine whether the elastic properties of the muscle-tendon complex are associated with the increase in joint stiffness. However, the direct association of joint stiffness and passive muscle tension after ECs has not been examined previously. To directly compare joint stiffness and muscle passive tension, it is essential to employ experimental animals. With regard to the effects of ECs on muscle-tendon complex passive tension, Whitehead et al. (2001; 2003) performed ECs on exposed cat medial gastrocnemius muscles. Electrical stimulation was applied via the motor neurons, and the distal tendon of the medical gastrocnemius was extended to induce ECs. By using such experimental systems, they clearly demonstrated that passive tension of the medial gastrocnemius was significantly elevated immediately after the ECs. Since Whitehead et al., 2001 did not examine ankle joint stiffness in the experimental animal, the direct relationship between joint stiffness and muscle passive tension remained unclear. With regard to joint stiffness, Gillette and Fell, 1996 measured ankle joint stiffness (static PRT) in rats. They revealed that 7-day hindlimb suspension significantly increased the PRT of the rat ankle joint. They also measured the ankle joint PRT after each individual muscle tendon (gastrocnemius, soleus, and plantarius muscles) was cut. The results revealed that the gastrocnemius and soleus muscles contributed to the increase in joint PRT in hindlimb-suspended animals. Direct comparison is important for evaluating the effects of ECs, as shown by Gillette and Fell; however, such a trial has not been pursued previously. In this study, we measured the PRT of rat ankle joints and examined the relationships between the ankle joint PRT and the gastrocnemius muscle-tendon complex extensibility. We addressed the following two specific hypotheses: (i) the ankle joint PRT is increased by the ECs of the gastrocnemius, and (ii) the ankle joint PRT is related to the gastrocnemius passive tension. To assess these hypotheses, based on the reports of Gillette and Fell, 1996 and Gajdosik et al., 1999, we developed equipment for measurement of the PRT of the rat ankle joint. The passive tension of gastrocnemius was also evaluated as reported by Whitehead et al., 2001. We also measured the muscle mass after ECs to investigate edema formation. |