For this study the harai-goshi throw was executed for an ippon (perfect throw) by the same thrower (tori) under competitive and non-competitive conditions. It was expected to observe similarities in execution between conditions but it was immediately clear that there were some differences. A longer total time for the KT phase as well as a large number of directional changes in uke’s COM movement indicated a vigorous attempt by uke to defend the throw during the competitive situation. Not surprisingly, the defensive effort by uke is most likely the root of a number of kinematic differences between conditions. One of the most important aspects of harai-goshi during KT is to pull uke forward. The data in this study substantiated this action with uke’s COM velocity moving forward along the anteroposterior axis during both competitive and non- competitive conditions. Differences occurred with how the pull was performed. The competitive condition indicated an initial movement by tori’s COM away from uke, followed by a movement towards uke, and then again away from uke. This pattern reflected the same pull-push-pull pattern via ground reaction force measurements found by Harter and Bates, 1985. Even though the non-competitive condition indicated only a movement towards uke, it is likely that tori pulled uke forward in both conditions. During the competitive condition the resistance from uke required tori to pull with greater contribution from whole body momentum. Conversely, the non-competitive condition enabled tori to simultaneously pull and step into a stationary uke using less whole body momentum in the process. From a peak velocity standpoint, tori’s COM was found to be generally slower during the competitive condition. This was the result of uke’s defensive effort and large inertial component, resulting in an overall decrease in tori’s COM velocity. Moreover, uke’s peak COM velocity was found to be generally greater during the competitive condition indicating greater pulling power by tori during competition. As mentioned previously, tori’s movement along the anteroposterior direction during the competitive condition was consistent with the pull-push-pull ground reaction force pattern found by Harter and Bates, 1985. The push force reflected tori’s backwards movement towards uke. In this study, both conditions exhibited peak COM velocities for tori in the backwards direction near 81% of KT. These findings suggest that regardless of condition there is an effort by tori to push backwards during the later stage of KT, namely tsukuri, to generate sweeping power and enhance collision with uke. This is also consistent with the findings of Pucsok et al., 2001 who found a significant relationship between anteroposterior ground reaction forces for the left (supporting) foot and the horizontal velocity of the sweeping (right) leg. Furthermore, it can be considered an advanced trait, since rear GRF forces during harai-goshi were found to be greater with advanced judo players (Yabune, 1994). The defensive effort by uke was most influential on velocities along the vertical axis. During the competitive condition there was a large downward peak COM velocity (-80 m/s) measured for uke early in the KT phase (42%). This indicated an attempt by uke to quickly lower their COM to maintain stability and defend the throw, which was not seen during the non-competitive condition. This defensive posture likely influenced uke’s vertical velocity by allowing tori to generate large impulse against a resistance. Once the defense was breached uke’s upward velocity increased dramatically and continued to increase into the throwing phase (kake phase). Uke’s defensive posture during the competitive condition most likely affected forward velocity in the same manner which was also found to increase dramatically into the kake phase. Despite uke’s defensive effort along the vertical axis, tori exhibited a similar upward to downward peak COM velocity pattern between conditions. This pattern represents tori’s orthodox throwing technique, where there was an attempt to pull uke upward then downward with a simultaneous leg sweep (Harrison, 1952; Kano, 1986; Kim and Shin, 1983; Koizumi, 1960). This procedure occurred much more quickly during the competitive condition with tori’s peak upward and downward velocities occurring at 19% and 41% of KT respectively compared to the non-competitive trial at 45% and 73% of KT respectively. Thus, the execution of the throw occurs faster during competition, however, due to the defensive efforts by uke the actual outcome of the throw is delayed, as represented by the longer total KT time. Imamura et al., 2006 found a form of resistance to tori’s pulling efforts by uke during the harai-goshi throw. This resistance was found to be very small and occurred in the opposite direction of tori’s pulling right hand along the mediolateral direction. Because the resistance was too small to be considered an effective defense by uke, it was thought to be a key event during a successful throw, where the resistance froze uke into a stationary position which, in turn, allowed tori to execute an effective tsukuri and properly fit into the throw. The resistance in this study was represented by uke’s movement to their left or negative velocity. Both conditions demonstrated this movement during the KT phase, with the competitive condition showing only a small velocity in this direction. When comparing the two conditions it was evident that tori pulled uke to their right during competition. This directional movement illustrates a distinct difference on how the harai-goshi is performed when it is executed during movement and from a stationary position. Since the non-competitive condition did not demonstrate any movement of either tori or uke’s COM to the right, it can be assumed that movement to the left is more representative of the throw itself, while movement to the right is more representative of uke and tori’s movement before the throw is executed. This can be a likely explanation as to why uke’s resistance to their left was not more readily seen in velocity data of the competitive situation. More importantly, these findings suggest that competitive judo players may try to strategically create movements to uke’s right before executing harai-goshi. General conclusions concerning the two conditions indicated that the competitive condition created greater velocities onto uke. Tori’s peak trunk angular velocity (TAV) was the only tori measurement that reflected this trend with the competitive condition eliciting greater TAV in both directional rotations. There were two distinct TAVs that occurred during KT. The first was a counterclockwise (CCW) TAV that represented tori stepping into the throw as the hips begin to turn 180 degrees. The second was a clockwise (CW) TAV that represented the subsequent rotation of the upper body 180 degrees (recall that the harai-goshi requires tori to turn 180 degrees). The CW TAV also includes the execution of the sweep. There was a third smaller TAV in the CCW direction which was likely created by the collision with uke’s body. Though all TAV measurements were greater for the competitive condition, the patterns were the same. The CCW to CW pattern indicated an attempt by tori to pre-stretch muscles in the CCW direction to enhance muscle contraction in the CW direction. It is conceivable that a greater pre- stretch of muscles can lead to greater contractile forces in this case. Uke’s defense may also play a role in this process. Since tori attempts to rotate against a greater resistance a greater pre-stretch can be attained. This may also necessitate the need for the slight resistance by uke along the mediolateral axis, which was found in this study as well as Imamura et al., 2006. Just as the resistance may improve tori’s ability to execute tsukuri, it may also enhance the pre-stretch of tori’s trunk muscles to improve contractile forces during CW rotations. If this resistance theory is true, a judo player should seek to find the point at which the opponent’s resistance is minimal enough to overcome yet strong enough to enhance pre-stretch of muscles and subsequent kuzushi/tsukuri in the form of body collision. |