Previous research has demonstrated the important role of isometric strength to performance across a range of different sports (Stone et al., 2003b; 2004; 2005, McGuigan et al., 2006). The results of this study indicate that in collegiate football athletes the isometric mid thigh pull test does correlate well with 1RM testing. However, RFD was shown to be not as critical in relation to maximal strength in these athletes. These results suggest that isometric testing provides a good indication of an athlete’s dynamic performance during 1RM testing, including the back squat, power clean, bench press and split jerk exercises. As with our previous study with college wrestlers (McGuigan et al., 2006), we did not find a strong relationship between RFD and measures of strength and power in this study. The realization that strength and power are different qualities is very important in the correct design and assessment of resistance training for athletes and this has often been misunderstood by coaches. Interestingly, the RFD results were considerably less in the present study compared to our previous study using college wrestlers using a similar testing protocol. However, RFD may be an important performance variable to study within football players because explosive exercises tend to enhance the ability to generate high RFD (Aagaard et al., 2002; McBride et al., 2002). It appears that RFD is an independent strength quality and further research is required to determine its importance in high force sports such as football. The vertical jump test is a simple and reliable test that can provide useful information about power and performance characteristics of athletes (Canavan and Vescovi, 2004). We also used the standing broad jump test to provide information about the player’s horizontal jump performance. There were no significant relationships between jump performance other than 1RM squat and vertical jump (r = 0.54). There was also no relationship with RFD or PF. This would suggest that these jump tests are providing information about specific power and performance qualities. However it should be noted that these tests were only used to measure performance in terms of jump height. Previous research has shown nearly perfect relationships between peak power during vertical jumping and PF (>0.88) during the isometric mid thigh pull (Haff et al., 2005). There is little research on the jerk exercise in high performance sport, both from training and testing perspectives. The split jerk exercise is used in many strength and conditioning programs to improve explosive power. Interestingly, this test provided the greatest number of significant relationships with the other tests conducted. Hakkinen et al., 1986 showed a significant correlation between PF and clean and jerk (r = 0.66) in elite weightlifters. Haff and colleagues (2005) found similar results (r = 0.66) with female weightlifters. The PF during the isometric mid thigh pull was significantly related to 2RM split jerk (r = 0.72). This further highlights the utility of specific isometric testing and that PF is strongly related to dynamic strength. A limitation of the present investigation is the relatively small number of subjects who were tested. With sufficient numbers of athletes it would be interesting to compare different playing positions. Previous research has shown that strength and power characteristics vary depending on the position being played (Fry and Kraemer, 1991; Secora et al., 2004). There is also evidence that certain tests can differentiate starters from non-starters but it is dependent on the position (Black and Roundy, 1994). The athletes used in the present study were freshmen who had recently entered the program. It would also be interesting to see if the results would be similar in athletes who had been in the program for a longer period of time. Maximum strength appears to be a major factor influencing performance in a variety of different sports (Stone et al., 2004). It has been previously been shown that absolute strength and power are an important component of American football (Fry and Kraemer, 1991; Secora et al., 2004). While traditional weight training results in large changes in strength among untrained subjects, and strength appears to be an important physical capacity in most sports, whether standard strength training methods can enhance sporting performance appears to depend upon the particular sport. Strength-dominated sports that involve the production of large forces over relatively long time periods (such as American football) would appear to be readily improved by strength training. Not surprisingly, body mass was significantly correlated with several of the 1RM tests and inversely related to broad jump distance. Certain strength measures represent specific or independent qualities of neuromuscular performance that can be assessed and trained independently. Many prefer isometric testing because it is not confounded by issues of movement velocity and changing joint angle. It has been suggested that isometric movement position can strongly influence the relationships that are observed with dynamic tasks (Haff et al., 1997). The PF determined using the isometric mid thigh pull seems to be strongly related to performance on other dynamic tests such as 1RM testing. A potential practical application of these findings is that the isometric mid thigh pull can be used by Strength and Conditioning coaches to provide important information about maximal strength in American football players. In situations where coaches are required to test large squads of athletes, they can confidently use this test to provide strength data and perform the testing sessions quickly and efficiently. Given that the test seems to indicate to a large extent the dynamic performance characteristics of athletes, it may not be necessary to perform 1RM testing on a large number of exercises. There may also be some potential benefits of including this type of isometric exercise in training programs but this area requires more research. |