In contrast to previous research, this study examined ground reaction torque during golf swing performance on a natural grass surface in an outdoor field setting. The interaction of the shoe outer sole and spikes with the natural grass turf will therefore have been quite different to studies which utilised artificial surfaces (Barrentine et al., 1994; Dillman and Lange, 1994; Williams and Cavanagh, 1983). In this study the metal or alternative spikes will have penetrated the grass root structure and therefore the golf stance stability will have been supported in the critical backswing and in the dynamic downswing and follow-through, and it is likely this would be perceived by the golfer. The outdoor testing location would also potentially better replicate the visual and long distance shot natural to the golf course environment than an indoor testing station. The more ecological approach to testing might also influence body posture, with potentially shoe spike penetration and a longer distance visual focus, influencing body posture and movement during the golf swing. Previous research, using artificial surfaces indoors, focused on orthogonal ground reaction force, and reported maximal forces at each foot, and the weight transfer from the back foot during the backswing to the front foot in the downswing and follow-through (Barrentine et al., 1994; Dillman and Lange, 1994; Koenig et al., 1994; Williams and Cavanagh, 1983; Williams and Sih, 1998). Worsfold et al., 2007 discussed these previous studies and noted the predominant greater maximal front foot ground reaction force measures and asymmetric force generation pattern reported or summarised in most studies other than that of Barrentine et al., 1994. Worsfold et al., 2007 reported, for a natural turf based study of golf swing performance, that the maximal vertical forces were less when a driver was used (back foot 0.49 BW; front foot 0.84 BW) than when the 3-iron and 7-iron were used (back foot 0.82 BW; front foot 1.1 BW). Although the levels of front foot Tzmax in this study (20 Nm approx) were similar to those reported from the artificial turf study by Barrentine et al., 1994, the reported similar torque levels of outward rotation at the back foot (peak 22 Nm) and front foot (peak 23 Nm) when using a driver, are not supported by this research. Barrentine et al., 1994 reported on handicap level in relation to torque and described similar maximal values for back foot and front foot in the range of 17-26 Nm for all handicaps when Goodyear welted golf shoes were worn. However for PGA and low handicap players, outward rotation was 17-18 Nm for the back foot, and 23-26 Nm at the front foot. Hence, within the better golfers in Barrentine et al.’s study there is evidence of slightly greater maximal outward rotation at the front foot compared to the back foot, but the front to back foot differences in the Tzmax values recorded in this current research were greater. For all clubs in this natural grass turf based study, Tzmax was greater at the front foot (17-19 Nm) than at the back foot (6-7 Nm). The torque generated was also greater at the front foot (40 Nm) than at the back foot (10-16 Nm). The generated torque values reflected both the negative clockwise and positive anticlockwise rotations of the feet. For the back foot case, the differences between the two torque parameters in figures 7 and 8">8, for the driver, reflected the greater mean torque generated during the backswing in the metal spike shoe (8 Nm) in comparison to the alternative spike shoe (6 Nm). Worsfold et al., 2006a compared the metal 7-spike shoe and the alternative 7-spike shoe characteristics using mechanical testing methods on natural grass turf. In comparison to the alternative spike shoe the metal spike shoe provided more forefoot linear (7%) and rotational (31%) traction, and in complete foot to natural turf contact traction was greater for inward rotation (11%) and outward rotation (18%). Hence, the increased torque generation in the back swing observed when the low handicap players wore the metal spike shoe was likely to have been linked to the greater traction in outward rotation provided by the metal spike golf shoe outer sole on natural grass turf. Dillman and Lange (1994) cited research by Richards et al. (1985) which identified that low handicappers had more weight on the shoe heel at the top of the backswing, which would suggest they would be more dependent on complete outer shoe sole traction than less experienced golfers. There is evidence that detailed dynamic numerical research analyses using groups of subjects can aid in the identification of shoe design characteristics influencing human movement during performance of a golf swing. An alternative 7-spike golf shoe was reported to allow the generation of significantly greater maximal vertical force and torque during golf swing performance with a driver on natural turf than an alternative 6-spike shoe design which had one less alternative spike in the central forefoot toe position (Worsfold et al., 2006a). Case study approaches (e.g. Williams and Sih, 1998) and qualitative observational reports without descriptive statistics or statistical analyses (Koenig et al., 1994), can result in the basis of knowledge being anecdotal in nature (Worsfold et al., 2007). In this research when using the driver club, better low handicap golfers generated more torque in each type of shoe at the back foot (Table 1). When driving, the difference in torque generation with the metal spike shoe (18.2 Nm) compared to the alternative spike shoe (15.8 Nm), was likely to be linked to the different outer shoe sole performance characteristics determined during mechanical testing.. The metal 7-spike and alternative 7-spike shoe in this investigation provided good traction, and slip did not occur. However this research has shown that, at the back foot the torque generation was greater in the metal spike shoe, and this was particularly of value to low handicap players who had greater torque generation demands. It is recommended that golf shoe designers should consider designing outer sole traction to particularly cope with the torque demands at the back foot interface when low handicappers perform long distance shots with a driver, especially since only approximately 0.5 BW peak vertical ground reaction force acts through the back foot and weight transfer also occurs. In future research and design, consideration should also be given to low handicap golfers of lighter body weight to ensure that their specific torque generation requirements at the back shoe-natural grass interface are addressed. This experimental research study has revealed that the anecdotal increased force associated with golf driver usage compared to iron usage is misleading, and that the rotational force (torque) generated at the shoe-grass interface is an important component when using the driver. However, ground reaction force variations are important in maintaining stability, and in weight transfer patterns (typically peak 0.3-0.4 BW between feet) that are potentially important in golf coaching (Worsfold et al., 2008) and improving performance. The results of this experimental study need to be borne in mind when considering the advisability of determining golf shoe selection on indoor testing of golf swing performance, particularly if artificial grass surfaces (or carpet, smooth flooring) are involved in the process. Inclusion of natural grass turf within a testing facility could vastly improve the applicability of golf shoe evaluation and selection. |