The aims of the present study were: (i) to describe the pressure profile around the swimmers in drafting through CFD analysis; (ii) to assess the drafting distances effect in the Cd; (iii) to assess the distance in which the Cd of the back swimmer is equal to the Cd of the leading swimmer, considering different flow velocities. The major finding of this work was that the Cd of the back swimmer progressively increases concomitantly with the distance between swimmers, until a distance between 6.45 m and 8.90 m is reached. Afterwards the Cd of both swimmers remains equal. In the present study we only analyzed a passive drag situation. Therefore, we attempted to compare our numerical results with experimental data found in passive drag analyses. Comparing the values of the Cd obtained by the CFD analysis with experimental data from other studies, we found values that agree with the previous research (Clarys, 1979; Mollendorf et al., 2004). Clarys, 1979 reported Cd values between 0.58 and 1.04 in the human body in passive towing with a Reynolds number varying between 6.6 x 105 and 3.9 x 106. Recently, Mollendorf et al., 2004 has found Cd mean values in passive towing between 0.83 ± 0.04 and 0.90 ± 0.08 in a group of male adult swimmers using various types of competition suits. The comparison between our data and data from active drag measurements is not simple, since there are different approaches to evaluate active drag, which can lead to different results (Toussaint et al., 2004). On the other hand, it is difficult to experimentally evaluate active drag with the swimmer totally submerged, which is what happens in our study. In the future, we aim to improve numerical simulations, allowing, for instance, to evaluate underwater active drag while the swimmer is kicking. With these data, we will be able to compare passive and active drag using the same methodology. The Cd behavior verified in the present study with different flow velocities showed that when velocity increases, Cd decreases, which is consistent with previous observations with non-human models. In lifeless objects with regular geometry (not biological) the Cd varies with the inverse rate of Re (Wu, 1971). The same author presented Cd data of dead fishes (equivalent to passive towing) in a moving water tank. It was verified that a gradual reduction of this variable occurred when the Re increased. In that study the slope of the regression line was about -0.40, changing the Cd values between 0.1 and 0.5. Jiskoot and Clarys, 1975 described, in the human body when completely submerged at a 0.60 m depth and in passive towing (velocity range between 1.50 m.s-1 and 1.90 m·s-1), an inverse relationship between the Cd and the velocity values calculated by drag (D) and the mean body dimensions of the sample reported by Clarys, 1978. The Cd values changed between the unit and 0.95, with a slope in the regression with the velocity of -0.17. This value is close to the value (-0.16) found by Lyttle et al., 1999, when they calculated the Cd by the D values reported for swimmers in passive towing with an equal depth of 0.6 m. In that study, the range of velocities varied between 1.60 m·s-1 and 3.10 m·s-1. Therefore, the inverse association between the Cd and the velocity of the flow that we have found seems to correspond to what occurs in an experimental situation. Though, few studies have addressed the human body completely submerged, in passive towing. However, the values presented in the present study showed a gradual reduction of Cd with velocity increase and presented, also, a higher slope (-3.96). This slope is similar to experimental values found in lifeless objects with a regular geometry or in fishes with bodies of higher hydrodynamic profile. Therefore, it is possible that the human body representation (model) that was used is still much stylized. On the other hand, the use of a three dimensional model with the arms extended at the front, in the streamlined position, could lead to improve CFD data. This is another issue that should be addressed in future studies. Comparing our Cd values observed for different distances between swimmers with the experimental studies, a general agreement can be found. Chatard and Wilson, 2003 studied the effect of the distance between swimmers displacing in a queue on the metabolic and hydrodynamic responses of the swimmer displacing immediately behind. The distances that were evaluated were 0.0, 0.5, 1.0 and 1.5 m. The drag was explored by a passive towing situation. The authors found a decrease of 20% to 21% in passive drag in distances between 0 m and 0.5 m and concluded that these distances were the most advantageous to the swimmer submitted to the suction effect. In the present study, as the distance between swimmers increased, the Cd value of the back swimmer approaches that of the leading swimmer. To a minimal distance between swimmers (0.50 m), the Cd mean value of the back swimmer is only 55.97 ± 1.03% of the value of the leading swimmer. Thus, the increase of this distance may induce an increase in the effort of the back swimmer. When the distance reached a value of 6.00 m, the Cd percentage difference between both swimmers increased to values from 83.77% up to 85.45%, depending on the velocity, as it can be verified in Figure 4. Considering only the calculations of the drafting effect based on the application of numerical simulations we concluded that Cd values of both swimmers do not equalize. This may be because it is a free flow and/or due to the fact that we did not consider other factors that interact with the flow (i.e. the swimmers roughness and the distance to the wall - right side of the domain). This latter situation, particularly, could have an important effect on Cd. Indeed, the approach of the back swimmer to the wall of the right side could have prevented the velocity convergence and the pressure reestablishment. This fact leaded us to remove the values higher than 6 m from the model, as those values could influence the natural convergence observed until the 6.00 m distance between swimmers. Therefore, in future studies, this issue should be considered and a domain with larger dimensions may be used to enable pressure reestablishment and velocity convergence. Nevertheless, it was interesting to observe that our data revealed that the distance in which the swimmers were in the same hydrodynamics conditions ranged from 6.45 m to 8.90 m. This study is also limited to the analysis of entirely submerged bodies. In fact, this is a different situation from that observed at the water surface. To our knowledge, up to the present, no work was able to analyze the human body in the interface water-air. We chose to analyze the body totally submerged in the water as a first approach to study the human movement in swimming, as this approach simplifies the simulation conditions. Moreover, we simulated a domain with a high depth to minimize the wave drag and to include the water flow under and above the model. Future models will be applied for bodies on/at the water surface, taking into account the above and under water body volumes and fluid characteristics. |