To our knowledge, this study is the first to compare self-reported stress fractures and diagnosed stress fractures within the same population. Fourteen percent of the athletes self-reported stress fractures, while only 8.1% were diagnosed with stress fractures. This indicates a low validity regarding self-reporting of such injuries. Apart from the study design, a number of factors can influence interpretation of the results, such as diagnostic and clinical definitions of stress fracture, confounding factors, sample size, sampling methods, length of the stress fracture observation period, and different sports/events (Brukner et al., 1999). In most of the studies published on the occurrence of stress fractures, only one or two different sports are investigated (Barrow and Saha, 1988; Bennell et al., 1995; 1996b, Brunet et al., 1990; Frusztajer et al., 1990; Pecina et al., 1990; Warren et al., 1986; Dubravcic-Simunjak et al., 2008). The athletes in our study represented 46 different sports, and it is therefore difficult to directly compare the results. However, our self-reported data are in occurrence with a study by Brunet et al., 1990 where 13.2% of competitive runners self-reported the prevalence of stress fractures. On the other hand, in three other studies on self-reported stress fractures, where the diagnostic methods are not stated, the prevalence was higher (21.0%, 25.0% and 26.6%) (Nattiv et al., 1997, Pecina et al., 1990, Cameron et al., 1992). Even higher numbers has been found in collegiate distance runners 37.0% (Barrow and Saha, 1988) and ballet dancers 45.0% (Warren et al., 1986). Furthermore, Bennell et al., 1995 found the self-reported prevalence rate to be as high as 51.5% among female track and field athletes. These athletes reported that their stress fracture was diagnosed by imaging, but this was not investigated further and are therefore not comparable with our result. The high prevalence found in these retrospective studies (Barrow and Saha, 1988, Bennell et al., 1995, Warren et al., 1986) may be due to the specific sport investigated and/or over-reporting of stress fractures. Two prospective studies show an annual incidence of athletes diagnosed with stress fractures at 6.9% (Johnson et al., 1994) and 21.7% (Bennell et al., 1996b). In the study by Bennell et al., 1996b, track and fields sports were the main events, while Johnson et al., 1994 investigated athletes competing in different kind of sports. In both studies the athletes were followed by observation and the stress fractures were diagnosed by imaging. The latter study is therefore somewhat comparable to our results based on diagnostic method and athletes competing in a variety of sports. Johnson et al., 1994 investigated 321 female athletes participating in 12 different kinds of sports. During a two-year follow-up, 22 stress fractures were found, and the most common site was tibia (n = 9). In contrast, we found that only two of our 15 athletes diagnosed with stress fractures had stress fractures in tibia or fibula, and more than half of the athletes (n = 8) had stress fractures in metatarsals. Only four athletes were diagnosed with metatarsal fractures in the study by Johnson et al., 1994. Furthermore, it should be mentioned that 64% (n = 14) of the athletes with stress fractures in Johnson et al’ s (1994) study competed in track and field events, while only 20% (n = 3) of the athletes with stress fractures in our study competed in track and field events. Studies have found that especially track and field athletes have a high prevalence of stress fractures (Bennell and Crossley, 1996; Johnson et al., 1994). We found that our athletes with stress fractures represented a variety of sports. However, when we divided our sports into sport groups based on mechanical loading (Torstveit and Sundgot-Borgen, 2005a), we found that nine athletes diagnosed with stress fractures competed in HI-sports, six in MI-sports, and none in LI-sports. In accordance with our results, Bennell et al., 1995 found that of 22 stress fractures half of the athletes represented HI-sports and the second half represented MI-sports. These findings are also supported by Edwards et al., 2008. Due to the external weight impact on each bone, it is expected that high mechanical loading can be a risk factor for stress fractures (Bennell and Brukner, 1997; Brukner et al., 1999). On the other hand, mechanical loading has a positive effect on BMD (Heinonen et al., 1995, Vuori, 2001), but studies investigating the association between low BMD and stress fractures have contradictory findings (Bennell et al., 1995; 1996a; 2004; Carbon et al., 1990; Frusztajer et al., 1990; Kelsey et al., 2007; Marx et al., 2001; Vinther et al., 2006). By using a questionnaire to collect data, the results consist of what the subjects report that they have experienced or have not experienced (Sundgot-Borgen, 1994; Sundgot-Borgen and Torstveit, 2004). In our study, 42.3% of the athletes were classified as false positive subjects (b/(a+b) = 11/26). Thus, our results indicate that self-reporting of stress fractures has low validity among female elite athletes. In terms of reasons for the over-reporting of stress fractures, it is important to note that eight of the athletes who falsely self-reported a stress fracture thought their injury (acute fracture or other injuries) was a stress fracture. Additionally, as many as four of the athletes who falsely self-reported stress fracture, were told by their physiotherapist that their injury was a stress fracture. This finding underlines the need for education and information even to health personnel working with athletes in order for them to give the best treatment methods. Even if many of our controls representing the general population had a low BMD (Torstveit and Sundgot-Borgen, 2005a), and 4.1% of the controls self- reported a stress fracture, none of them were diagnosed with stress fractures. Thus, all of our non- athletic controls were classified as false positives. The association between low BMD and fractures are well known among postmenopausal women with osteoporosis (Melton et al., 1993), but this association has not been confirmed in premenopausal women. Furthermore, a stress fracture is normally seen upon as a sports-related injury (Khan et al., 2001), and to our knowledge studies in this area pertain to athletes (Barrow and Saha, 1988; Bennell et al., 1995; 1996b; Cameron et al., 1992; Dubravcic-Simunjak et al., 2008; Johnson et al., 1994; Kelsey et al., 2007; Mattila et al., 2007; Nattiv et al., 1997; Pecina et al., 1990; Torstveit and Sundgot-Borgen, 2005a; Warren et al., 1986) and military populations (Bijur et al., 1997; Jones et al., 1993; Milgrom et al., 1994; Montgomery et al., 1989; Rutherford, 1993). Our findings support the assumption that stress fractures are a problem related to athletes competing in sports and not to generally physically active females. |