By dividing elbow flexion and extension in three different phases, according to joint ROM, we expected to observe changes in modulation of neuromuscular activity for the three dumbbell curl protocols. Dumbbell Biceps Curl and Inclined Dumbbell Curl elicited similar pattern of increasing and decreasing muscle activation along the three phases, for the concentric and eccentric contractions respectively, whereas an opposite trend of sEMG RMS amplitude was observed for the Dumbbell Preacher Curl. Concerning the choice of an appropriate load representing 40% of individual maximum, the mean MVC score observed in this study (43.6 ± 7.7% of individual body mass) was far higher than that reported by Kasprisin and Grabiner (2000) (30.6 ± 4.7% for 10 healthy adults). This difference likely results from the elbow joint angle considered for the MVC trial, since at 90° of elbow flexion the biceps brachii fibers may be closer to optimal length for isometric force production (Hay, 1991; Inman et al., 1982; Langenderfer et al., 2005; Oliveira, 2004), with respect to the 75° elbow flexion considered by Kasprisin and Grabiner (2000). The submaximal elbow flexion elicited neuromuscular activity up to 95% of the maximum RMS value during the phase 3 of the concentric contraction for the IDC and DBC protocols. This relatively high neuromuscular activity suggests that the 40% MVC load was sufficient to elicit high modulation of sEMG amplitude. The mean duration and size of either concentric or eccentric contractions ranged from 3.59 ± 0.91 to 4.65 ± 1.68 s and from 115.50 ± 11.20 to 131.91 ± 18.25°, respectively, therefore characterizing a quasi-isometric movement (Siff, 2004). Since force production is critically affected by muscle tension-length relationship, only for movements performed at low velocities (Lieber, 2002), the neuromuscular activity for all protocols was expected to be highly dependent on muscle length. Furthermore, Prilutsky, 2004 observed a similar level of neuromuscular activity of biceps brachii muscle for eccentric contractions with constant speed, corroborating the almost constant RMS values (Figure 3) observed for the eccentric contractions performed in this study. This evidence supports the effect of muscle length on the muscle force production, since dumbbell curls may have been performed with minimal changes at movement velocity. Although subjects were instructed to start from full elbow extension, their movements started from a slightly flexed position (around 20°), suggesting a compensation mechanism to optimize the contribution of elbow flexors and passive tension. Some studies reported similar strategy for starting the movement, with elbow joint angle ranging from 15° to 48° (Hansen et al., 2003; Keeler et al., 2001; Uchiyama et al., 1998). During isometric contractions, the increase of muscle force heavily relies on both motor unit firing rate and recruitment, according to the size principle (Henneman, 1985). However, the use of these strategies seems to be reweighted in a different way during dynamic contraction, with the recruitment of additional motor units playing a critical role in muscle force production (Sbriccoli et al., 2003; Søgaard et al., 1998). Such changes in motor unit recruitment pattern, in addition to different load sharing strategies, may have contributed to the high variability of RMS values between subjects (coefficient of variation ranged from 31 to 69 %, for all phases and contractions). Regarding the changes in sEMG amplitude for different dumbbell curl protocols, it was expected an increase of neuromuscular activity during IDC, especially when elbow joint was close to full extension. The shoulder hyperextension, elicited by the IDC protocol, stretches the long head of biceps brachii muscle beyond its optimal length, leading to an inefficient actin-myosin coupling. On the other hand, the similar RMS values between IDC and DBC (Figure 2) indicates an increased contribution of other elbow flexors, besides the contribution of passive tension from muscle and soft tissues, at the beginning of concentric and at the end of eccentric contraction. The low values of sEMG amplitude observed for the beginning of concentric contractions, independent of the dumbbell curl protocol, may be explained by the reduced load moment arm and/or the right shift of muscle length value with respect to the muscle tension-length relationship (Falk and Tenenbaum, 1996). Although at about 90o of elbow flexion the moment arm of biceps brachii is close to its highest value (Murray et al., 1995; 2002), such position was not sufficient to compensate the increment of the resistance torque, which is maximal for this joint angle, and thus resulting in high RMS values. The shoulder flexed position in the DPC exercise elicited a particular pattern of muscle activation, which significantly decreased and increased from the initial to the final phases of the concentric and eccentric contractions, respectively. Although the early phase of the concentric contraction elicited high muscle activity to overcome the load torque, the neuromuscular demand decreased rapidly for the biceps brachii throughout the middle and late phases. The main reason for this pattern of activation is likely linked to the initial moment arm of the load, resulting from the shoulder flexion at the starting position (phase 1), and the inefficient length of elbow flexors. As the elbow flexes the load torque reduces, until the hand crosses elbow line, thus shifting the force production from elbow flexors to extensors (phase 3). Therefore, DPC exercise seems to have elicited high myoelectric activity only within a short range of elbow joint angle (i.e. the beginning of concentric and ending of eccentric contractions), which may be disadvantageous for training programs focused on the improvement biceps brachii ability to produce force. The use of a couple of electrodes could have been a limiting factor in this study. The shift of the innervation zone (IZ), inherent to dynamic contractions, attenuates or enlarges sEMG amplitude as the IZ gets closer or farer from the electrodes (Farina et al., 2001). However, the IZ effect on the RMS values estimated in this study was minimized by positioning the electrodes on the location recommended by SENIAM, since this location is close to half way between the biceps brachii IZ and the distal tendon (Merletti and Parker, 2004). |