The results of our study demonstrated that the lead hip experiences a significantly higher IR velocity during the downswing, compared to the trail hip ERvelocity. Although the rotational velocities of the hip are lower than those that have been reported for the shoulder during the throwing motion (Dillman et al., 1993; Fleisig and Andrews, 1995), the fact that these are experienced in a closed kinetic chain, may produce sufficient torsion on the hip to predispose the joint to injury. In particular, the rotational velocity contributing to the stress at the hip joint, may expose the acetabular labrum to risk for tear. Although golf is typically considered a non-contact sport, injuries related to golfing do occur. The leading area of injury in both professionals and amateurs appears to be the back (Gosheger et al., 2003; Grimshaw et al., 2002; Lindsay et al., 2000; McCarroll, 1996; Mc Carroll et al., 1990). Interestingly, these surveys have reported almost no hip injuries in golfers (Batt, 1992; Grimshaw et al., 2002; Lindsay et al., 2000; McCarroll, 1996; McCarroll et al., 1990; Theriault and Lachance, 1998). However, one orthopedic surgeon has reported on treatments of professional golfers for a particular pathology, hip labral tears (Philipon, 2001). Labral pathology of the hip is a more recent diagnosis in athletes. The occurrences of tears in the athlete’s acetabular labrum have been reported in sports that place rotational demands on the hip (such as tennis, golf, and hockey) (Binningsley, 2003; Mason, 2001; McCarthy et al., 2003). Although kinematic data on the throwing motion in baseball may illustrate mechanisms of a labral tear in the shoulder (Andrews et al., 1991), there is currently no evidence of the velocities of the lead and trail hips during a full golf swing to determine if the same potential exists for labral pathology in the hip. Past studies that have examined lower extremity rotational velocities have measured the hip in an open kinetic chain movement (Kellis et al., 2006; Nunome et al., 2002; 2006), but the lower extremity is a closed kinetic chain during the golf swing. For example, during the soccer kick, Kellis et al., 2006 found the angular velocity of the hip was between 125.9 and 151.4 deg·sec-1 depending on the time measured during a fatiguing protocol. It should be noted that the angular velocity of the hip in this skill movement would primarily be in the sagittal plane, and not a transverse plane rotational velocity as seen during the golf swing.. The study by Nunome et al., 2002 found much higher hip external rotational velocities of 636.0 deg·sec-1 during a side-foot soccer kick, but a lower rotational velocity of 343.8 deg·sec-1 during an instep soccer kick. The only study to measure “hip ”rotational velocity in a closed kinetic chain was Welch et al., 1995. They found the peak pelvis rotational velocity to be 714 deg·sec-1 just prior to impact of hitting a baseball. In our study peak hip rotational velocities were much lower at -227.8 ± 96.6 and -145.3 ± 68.0 deg·sec-1 respectively, occuring at 89.1% and 85.2% of the total downswing time (Table 2). This may reflect inherent differences in the mechanics of the baseball swing versus that of the golf swing. Additionally, our study was completed on female athletes who may have less capacity to generate high velocities than the male athletes in the baseball research. Furthermore, the “hip ”rotational velocity in the Welch study actually measured pelvis velocity relative to a stationary global coordinate system, which could produce inflated velocities as it does not account for the simultaneous movement of the adjacent segments as was done in our study. The golf swing is a very rapid movement, with the typical backswing taking 0.8-1.0 seconds, and the downswing lasting only 0.1-0.3 seconds for a total swing time ranging from 1.09-1.28 seconds among professionals and amateurs (McTeigue, 1994). Although the trail hip had a significantly lower rotational velocity than the lead hip, this type of quick movement during the downswing may place golfers at risk for labral pathology when the trail hip experiences ER and extension. Mason, 2001 suggested this combined position of hip ER and extension may be the “danger zone ”for labral tears to occur. Interestingly,, a golfer may not even have to exceed their normal joint range of motion (ROM) at the hip for this injury to occur, as long as the overall torsion on the joint surpasses threshold . Not only could injury occur to the acetabular labrum, but the repetitive rotational velocities may also be contributing to joint ROM adaptations. Vad et al., 2004 and Gulgin et al., 2008 have both found decreased IR in the lead hip of elite golfers. Thus, the significantly higher rotational velocities on the lead hip may be contributing to the surrounding soft-tissue adaptation. Vad et al. (2004) suggested that the rotational movement may be producing micro-trauma that leads to capsular contracture and ROM deficits, such as seen in shoulders of throwing athletes. Although the previous studies have found IR ROM deficits on the lead hip, both of those studies measured joint ROM in a non-weightbearing position. Future studies related to a more functional measurement, such as the golfer’s weight-bearing ROM would provide additional insight as to whether a golfer exceeds their available joint ROM at any point during the golf swing, thus stressing the surrounding soft tissue, and possibly adding to the injury risk. In addition, reports about the frequency of acetabular labral tears, and which hip the pathology occurs (for athletes) would also be beneficial for understanding the mechanism of this pathology. One limitation to our study was that all golfers were asked to swing the same custom-built driver provided by our lab. We wanted to control the length and mass of the club so that rotational velocities of the hip would not be the result of swinging a heavier or lighter club with respect to the other golfers. Although this length or mass may not have been what all participants were used to, they were allowed adequate practice swings in order to gain a level or comfort with the driver. |